Skip to main content
Log in

Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This study investigated endocrine control of branchial ionoregulatory function in Nile tilapia (Oreochromis niloticus) by prolactin (Prl188 and Prl177), growth hormone (Gh) and cortisol. Branchial expression of Na+/Cl cotransporter (ncc) and Na+/K+/2Cl cotransporter (nkcc) genes were employed as specific markers for freshwater- and seawater-type ionocytes, respectively. We further investigated whether Prl, Gh and cortisol direct expression of two Na+, K+-ATPase (nka)-α1 subunit genes, denoted nka-α1a and nka-α1b. Tilapia transferred to fresh water following hypophysectomy failed to adequately activate gill ncc expression; ncc expression was subsequently restored by Prl replacement. Prl188 and Prl177 stimulated ncc expression in cultured gill filaments in a concentration-related manner, suggesting that ncc is regulated by Prl in a gill-autonomous fashion. Tilapia transferred to brackish water (23 ‰) following hypophysectomy exhibited a reduced capacity to up-regulate nka-α1b expression. However, Gh and cortisol failed to affect nka-α1b expression in vivo. Similarly, we found no clear effects of Gh or cortisol on nkcc expression both in vivo and in vitro. When considered with patterns previously described in euryhaline Mozambique tilapia (O. mossambicus), the current study suggests that ncc is a conserved target of Prl in tilapiine cichlids. In addition, we revealed contrasting dependencies upon the pituitary to direct nka-α1b expression in hyperosmotic environments between Nile and Mozambique tilapia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auperin B, Rentier-Delrue F, Martial JA, Prunet P (1994) Evidence that two (Oreochromis niloticus) prolactins have different osmoregulatory functions during adaptation to a hyperosmotic environment. J Mol Endocrinol 12:13–24

    Article  CAS  PubMed  Google Scholar 

  • Auperin B, Leguen I, Rentier-Delrue F, Smal J, Prunet P (1995) Absence of a tiGH effect on adaptability to brackish water in tilapia (Oreochromis niloticus). Gen Comp Endocrinol 97:145–159

    Article  CAS  PubMed  Google Scholar 

  • Borski RJ, Hansen MU, Nishioka RS, Grau EG (1992) Differential processing of the two prolactins of the tilapia (Oreochromis mossambicus), in relation to environmental salinity. J Exp Zool 264:46–54

    Article  CAS  Google Scholar 

  • Breves JP, Fox BK, Pierce AL, Hirano T, Grau EG (2010a) Gene expression of growth hormone family and glucocorticoid receptors, osmosensors, and ion transporters in the gill during seawater acclimation of Mozambique tilapia, Oreochromis mossambicus. J Exp Zool 313:432–441

    Article  Google Scholar 

  • Breves JP, Hasegawa S, Yoshioka M, Fox BK, Davis LK, Lerner DT, Takei Y, Hirano T, Grau EG (2010b) Acute salinity challenges in Mozambique and Nile tilapia: differential responses of plasma prolactin, growth hormone and branchial expression of ion transporters. Gen Comp Endocrinol 167:135–142

    Article  CAS  PubMed  Google Scholar 

  • Breves JP, Hirano T, Grau EG (2010c) Ionoregulatory and endocrine responses to disturbed salt and water balance in Mozambique tilapia (Oreochromis mossambicus) exposed to confinement and handling stress. Comp Biochem Physiol A 155:294–300

    Article  Google Scholar 

  • Breves JP, Watanabe S, Kaneko T, Hirano T, Grau EG (2010d) Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl cotransporter in hypophysectomized Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 299:R702–R710

    Article  CAS  PubMed  Google Scholar 

  • Breves JP, Serizier SB, Goffin V, McCormick SD, Karlstrom RO (2013) Prolactin regulates transcription of the ion uptake Na+/Cl cotransporter (ncc) gene in zebrafish gill. Mol Cell Endo 369:98–106

    Article  CAS  Google Scholar 

  • Breves JP, McCormick SD, Karlstrom RO (2014) Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen Comp Endocrinol. doi:10.1016/j.ygcen.2013.12.014

  • Bystriansky JS, Richards JG, Schulte PM, Ballantyne JS (2006) Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J Exp Biol 209:1848–1858

    Article  CAS  PubMed  Google Scholar 

  • Bystriansky JS, Frick NT, Richards JG, Schulte PM, Ballantyne JS (2007) Failure to up-regulate gill Na+, K+-ATPase α-subunit isoform α1b may limit seawater tolerance of land-locked Arctic char (Salvelinus alpinus). Comp Biochem Physiol A 148:332–338

    Article  CAS  Google Scholar 

  • Dean DB, Whitlow ZW, Borski RJ (2003) Glucocorticoid receptor upregulation during seawater adaptation in a euryhaline teleost, the tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 132:112–118

    Article  PubMed  Google Scholar 

  • Dharmamba M, Maetz J (1972) Effects of hypophysectomy and prolactin on the sodium balance of Tilapia mossambica in fresh water. Gen Comp Endocrinol 19:175–183

    Article  CAS  PubMed  Google Scholar 

  • Evans DH (2011) Freshwater fish gill ion transport: August Krogh to morpholinos and microprobes. Acta Physiol 202:349–359

    Article  CAS  Google Scholar 

  • Fiol DF, Kültz D (2007) Osmotic stress sensing and signaling in fishes. FEBS J 274:5790–5798

    Article  CAS  PubMed  Google Scholar 

  • Fiol DF, Sanmarti E, Sacchi R, Kültz D (2009) A novel tilapia prolactin receptor is functionally distinct from its paralog. J Exp Biol 212:2007–2015

    Article  CAS  PubMed  Google Scholar 

  • Herndon TM, McCormick SD, Bern HA (1991) Effects of prolactin on chloride cells in opercular membrane of seawater-adapted tilapia. Gen Comp Endocrinol 83:283–289

    Article  CAS  PubMed  Google Scholar 

  • Hirano T (1986) The spectrum of prolactin action in teleosts. Prog Clin Biol Res 205:53–74

    CAS  PubMed  Google Scholar 

  • Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Resp Physiol Neurobiol 184:257–268

    Article  CAS  Google Scholar 

  • Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Horng JL, Hwang PP, Shih TH, Wen ZH, Lin CS, Lin LY (2009) Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am J Physiol Cell Physiol 297:C845–C854

    Article  CAS  PubMed  Google Scholar 

  • Inokuchi M, Hiroi J, Watanabe S, Lee KM, Kaneko T (2008) Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Physiol A 151:151–158

    Article  Google Scholar 

  • Kaneko T, Watanabe S, Lee KM (2008) Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua-BioSci Monogr 1:1–62

    Google Scholar 

  • Kiilerich P, Kristiansen K, Madsen SS (2007) Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. J Endocrinol 194:417–427

    Article  CAS  PubMed  Google Scholar 

  • Kültz D, Bastrop R, Jurss K, Siebers D (1992) Mitrochondrial-rich (MR) cells and the activities of the Na+/K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities. Comp Biochem Physiol B 102:293–301

    Google Scholar 

  • Madsen SS, Kiilerich P, Tipsmark CK (2009) Multiplicity of expression of Na+, K+–ATPase α-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change. J Exp Biol 212:78–88

    Article  CAS  PubMed  Google Scholar 

  • Mancera JM, McCormick SD (1998) Osmoregulatory actions of the GH/IGF-I axis in non-salmonid teleosts. Comp Biochem Physiol B 121:43–48

    Article  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    Article  CAS  Google Scholar 

  • McCormick SD, Bern HA (1989) In vitro stimulation of Na+-K+-ATPase activity and ouabain binding by cortisol in coho salmon gill. Am J Physiol Regul Integr Comp Physiol 256:707–715

    Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001

    Article  CAS  PubMed  Google Scholar 

  • Moriyama S, Oda M, Yamazaki T, Yamaguchi K, Amiya N, Takahashi A, Amano M, Goto T, Nozaki M, Meguro H, Kawauchi H (2008) Gene structure and functional characterization of growth hormone in dogfish, Squalus acanthias. Zool Sci 25:604–613

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TO, Ebbesson LOE, Madsen SS, McCormick SD, Andersson E, Björnsson BT, Prunet P, Stefansson SO (2007) Differential expression of gill Na+, K+-ATPase α- and β-subunits, Na+, K+, 2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J Exp Biol 210:2885–2896

    Article  CAS  PubMed  Google Scholar 

  • Nishioka RS (1994) Hypophysectomy of fish. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes: analytical techniques. Elsevier, New York, pp 49–58

    Google Scholar 

  • Pelis RM, McCormick SD (2001) Effects of growth hormone and cortisol on Na+-K+-2Cl cotransporter localization and abundance in the gills of Atlantic salmon. Gen Comp Endocrinol 124:134–143

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29(9):e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce AL, Fox BK, Davis LK, Visitacion N, Kitashashi T, Hirano T, Grau EG (2007) Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting. Gen Comp Endocrinol 154:31–40

    Article  CAS  PubMed  Google Scholar 

  • Pisam M, Auperin B, Prunet P, Rentier-Delrue F, Martial J, Rambourg A (1993) Effects of prolactin on alpha and beta chloride cells in the gill epithelium of the saltwater adapted tilapia “Oreochromis niloticus”. Anat Rec 235:275–284

    Article  CAS  PubMed  Google Scholar 

  • Rentier-Delrue F, Swennen D, Philippart JC, L’Hoir C, Lion M, Benrubi O, Martial JA (1989a) Tilapia growth hormone: molecular cloning of cDNA and expression in Escherichia coli. DNA 8:271–278

    Article  CAS  PubMed  Google Scholar 

  • Rentier-Delrue F, Swennen D, Prunet P, Lion M, Martial JA (1989b) Tilapia prolactin: molecular cloning of two cDNAs and expression in Escherichia coli. DNA 8:261–270

    Article  CAS  PubMed  Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS, Schulte PM (2003) Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206:4475–4486

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, McCormick SD, Hirano T (1993) Osmoregulatory actions of growth hormone and its mode of action in salmonids: a review. Fish Physiol Biochem 11:155–164

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Shepherd BS, Madsen SS, Nishioka RS, Siharath K, Richman NH, Bern HA, Grau EG (1997) Osmoregulatory actions of growth hormone and prolactin in an advanced teleost. Gen Comp Endocrinol 106:95–101

    Article  CAS  PubMed  Google Scholar 

  • Sandra O, Sohm F, de Luze A, Prunet P, Edery M, Kelly PA (1995) Expression cloning of a cDNA encoding a fish prolactin receptor. Proc Natl Acad Sci USA 92:6037–6041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seale AP, Riley LG, Leedom TA, Kajimura S, Dores RM, Hirano T, Grau EG (2002) Effects of environmental osmolality on release of prolactin, growth hormone and ACTH from the tilapia pituitary. Gen Comp Endocrinol 128:91–101

    Article  CAS  PubMed  Google Scholar 

  • Seale AP, Watanabe S, Grau EG (2012a) Osmoreception: perspectives on signal transduction and environmental modulation. Gen Comp Endocrinol 176:354–360

    Article  CAS  PubMed  Google Scholar 

  • Seale AP, Moorman BP, Stagg JJ, Breves JP, Lerner DT, Grau EG (2012b) Prolactin 177, prolactin 188 and prolactin receptor 2 in the pituitary of the euryhaline tilapia, Oreochromis mossambicus, are differentially osmosensitive. J Endocrinol 213:89–98

    Article  CAS  PubMed  Google Scholar 

  • Specker JL, King DS, Nishioka RS, Shirahata K, Yamaguchi K, Bern HA (1985) Isolation and partial characterization of a pair of prolactins released in vitro by the pituitary of cichlid fish, Oreochromis mossambicus. Proc Natl Acad Sci USA 82:7490–7494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stickney RR (1986) Tilapia tolerance of saline waters: a review. Prog Fish Cult 48:161–167

    Article  Google Scholar 

  • Tipsmark CK, Madsen SS (2009) Distinct hormonal regulation of Na+, K+-atpase genes in the gill of Atlantic salmon (Salmo salar L.). J Endocrinol 203:301–310

    Article  CAS  PubMed  Google Scholar 

  • Tipsmark CK, Breves JP, Seale AP, Lerner DT, Hirano T, Grau EG (2011) Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish. J Endocrinol 209:237–244

    Article  CAS  PubMed  Google Scholar 

  • Trewavas E (1983) Tilapiine fishes of the Genera Sarotherodon, Oreochromis and Danakilia. Comstock Publishing Associates, Ithaca, p 583

    Google Scholar 

  • Uchida K, Kaneko T, Miyazaki H, Hasegawa S, Hirano T (2000) Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool Sci 17:149–160

    Article  Google Scholar 

  • Uchida K, Moriyama S, Breves JP, Fox BK, Pierce AP, Borski RJ, Hirano T, Grau EG (2009) cDNA cloning and isolation of somatolactin in Mozambique tilapia and effects of seawater acclimation, confinement stress, and fasting on its pituitary expression. Gen Comp Endocrinol 161:162–170

    Article  CAS  PubMed  Google Scholar 

  • Watanabe WO, Kuo CM, Huang MC (1985) Salinity tolerance of Nile tilapia fry (Oreochromis niloticus), spawned at various salinities. Aquaculture 48:159–176

    Article  Google Scholar 

  • Weng CF, Lee TH, Hwang PP (1997) Immune localization of prolactin receptor in the mitochondria-rich cells of the euryhaline teleost (Oreochromis mossambicus) gill. FEBS Lett 405:91–94

    Article  CAS  PubMed  Google Scholar 

  • Whitehead A, Roach JL, Zhang S, Galvez F (2011) Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc Natl Acad Sci USA 108:6193–6198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yada T, Hirano T, Grau EG (1994) Changes in plasma levels of the two prolactins and growth hormone during adaptation to different salinities in the euryhaline tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 93:214–223

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Specker JL, King DS, Yokoo Y, Nishioka RS, Hirano T, Bern HA (1988) Complete amino acid sequences of a pair of fish (tilapia) prolactins, tPRL177 and tPRL188. J Biol Chem 263:9113–9121

    CAS  PubMed  Google Scholar 

  • Yamaguchi K, King DS, Specker JL, Nishioka RS, Hirano T, Bern HA (1991) Amino acid sequence of growth hormone isolated from medium of incubated pituitary glands of tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 81:323–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the encouragement and guidance provided by Prof. Tetsuya Hirano during the course of this study. We also thank Mr. Matt Barton, Mr. Jacob Stagg, and Ms. Elly Breves for laboratory assistance. This work was supported by NSF (IOS-1119693; E.G.G.), USDA (2008-35206-18785 and -18787; E.G.G. and D.T.L.), the Binational Agricultural Research Development (BARD) fund (IS-4296-10) and the Edwin W. Pauley Summer Program in Marine Biology (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Breves.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breves, J.P., Seale, A.P., Moorman, B.P. et al. Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus . J Comp Physiol B 184, 513–523 (2014). https://doi.org/10.1007/s00360-014-0817-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0817-0

Keywords

Navigation