Skip to main content
Log in

Transport of bacteria across and along the large intestinal lumen of guinea pigs

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Flow cytometry was used to observe the transport of fluorescently labelled viable bacteria in the large intestinal lumen of guinea pigs after the injection of the bacteria into the proximal colon. Bacteria were transported along the radial and longitudinal axes of the intestine and were separated from dietary residue, accumulated, and then transported back to the caecum. These observations, together with the heterogeneous distribution of bacterial species and chemical composition across and along the large intestine, suggest that there are several different microenvironments within the intestinal lumen between which bacteria and/or dietary residues move. The existence of different microenvironments within the intestinal lumen is consistent with poor mixing of the digesta within the large intestine of pigs and chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armitage JP (1992) Bacterial motility and chemotaxis. Sci Prog 76:451–477

    PubMed  CAS  Google Scholar 

  • Björnhag G (1987) Comparative aspects of digestion in hindgut of mammals. The colonic separation mechanism (CSM). Dtsch Tierärztl Wochenschr 94:1–48

    Google Scholar 

  • Björnhag G (1994) Adaptations in the large intestine allowing small animals to eat fibrous foods. In: Chivers DJ, Langer P (eds) The digestive system in mammals. Cambridge University press, New York, pp 287–309

    Google Scholar 

  • Holtenius K, Björnhag G (1985) The colonic separation mechanism in the guinea-pig (Cavia porcellus) and the chinchilla (Chinchilla laniger). Comp Biochem Physiol 82A:537–542

    Article  Google Scholar 

  • Horan PK, Slezak SE (1989) Stable cell membrane labelling. Nature 340:167–168

    Article  PubMed  CAS  Google Scholar 

  • Hörnicke H, Björnhag G (1980) Coprphagy and related strategies for digesta utilization. In: Ruckebusch Y, Thivend P (eds) Digestive physiology and metabolism in ruminants. MTP press, Lancaster, pp 707–730

    Google Scholar 

  • Hukuhara T (1973) Syoukakan undo no Mekanizumu. Bunkosya, Tokyo

    Google Scholar 

  • Jensen AG, Kalman SH, Nystrom PO, Eintrei C (1992) Anaesthetic technique dose not influence postoperative bowel function: a comparison of propofol, nitrous oxide and isoflurane. Can J Anethesth 39:938–943

    Article  CAS  Google Scholar 

  • Kiriyama H, Yukari H, Sakata T (1992) Comparison of in vitro productivities of short-chain fatty acids and gases from aldoses and the corresponding alcohols by pig cecal bacteria. J Nutr Biochem 3:447–451

    Article  CAS  Google Scholar 

  • McRorie J, Pepple S, Rudolph C (1998) Effects of fiber laxatives and calcium docusate on regional water content and viscosity of digesta in the large intestine of the pig. Dig Dis Sci 43:738–745

    Article  PubMed  CAS  Google Scholar 

  • Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40:693–696

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi E (2003) Digestive strategies of small hindgut fermenters. Anim Sci J 74:327–337

    Article  Google Scholar 

  • Sakaguchi E, Hume ID (1990) Digesta retention and fiber digestion in brushtail possums, ringtail possums and rabbits. Comp Biochem Physiol 96A:351–354

    Article  Google Scholar 

  • Sakaguchi E, Itoh H, Ushida S, Horigome T (1987) Comparison of fiber digestion and digesta retention time between rabbits, guinea-pigs, rats and hamsters. Br J Nutr 58:149–158

    Article  PubMed  CAS  Google Scholar 

  • Smith RH, McAllan AB (1974) Some factors influencing the chemical composition of mixed rumen bacteria. Br J Nutr 31:27–34

    Article  PubMed  CAS  Google Scholar 

  • Snipes RL, Hörnicke H, Björnhag G, Stahl W (1988) Regional differences in hindgut structure and function in the nutria, Myocastor coypus. Cell Tissue Res 252:435–447

    Article  PubMed  CAS  Google Scholar 

  • Siegel S, Castellan NJ Jr (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGrow-hill Book Company, New York

    Google Scholar 

  • Sokal RR, Rohlf JS (1995) Biometry, 3rd edn. Freeman, San Francisco

    Google Scholar 

  • Takahashi T, Goto M, Sakata T (2004) Viscoelastic properties of the small intestinal and caecal contents of the chicken. Br J Nutr 72:717–729

    Google Scholar 

  • Takahashi T, Karita S, Yahaya MS, Goto M (2005) Radial and axial variations of bacteria within the cecum and proximal colon of guinea pigs revealed by PCR-DGGE. Biosci Biotech Bioch 69(9):1790–1792

    Article  CAS  Google Scholar 

  • Takahashi T, Sakaguchi E (1998) Behavior and nutritional importance of coprophagy in captive adult and young nutrias (Myocastor coypus). J Comp Physiol B 168:281–288

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Sakaguchi E (2000) Role of the furrow of the proximal colon in the production of soft and hard feces in nutrias, Myocastor coypus. J Comp Physiol B 170:531–535

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Sakata T (2002) Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties. J Nutr 132:1026–1030

    PubMed  CAS  Google Scholar 

  • Takahashi T, Sakata T (2004) Viscous properties of pig cecal contents and the contribution of solid particles to viscosity. Nutrition 20:377–382

    Article  PubMed  Google Scholar 

  • Takahashi T, Sakata T (2005) Insoluble dietary fibers: the major modulator for the viscosity and flow behavior of digesta. Foods Food Ingredients J Jpn 210:944–953

    CAS  Google Scholar 

  • Takahashi T, Yamanaka N, Sakata T, Ogawa N (2003) Influences of solid particles on the viscous properties of intestinal contents and intestinal tissue weight in rats. J Jpn Soc Nutr Food Sci 56:199–205

    CAS  Google Scholar 

  • van der Waaij LA, Mesander G, Limburg PC, van der Waaij D (1994) Direct flow cytometry of anaerobic bacteria un human feces. Cytometry 16:270–279

    Article  PubMed  Google Scholar 

  • Waldenstedt L, Bjornhag G (1995) Retrograde flow of urine from cloaca to caeca in laying hens in relation to different levels of nitrogen intake. Dtsch Tierarztl Wochenschr 102:168–169

    PubMed  CAS  Google Scholar 

  • Watanabe T, Yajima T, Sakata T (1989) Regional heterogeneity of bacteria and their glycosidase activities across and along the colonic segments of rats. Lett Appl Microbiol 8:29–31

    Google Scholar 

  • Zammit PS, Mendizabal M, Naftalin RJ (1994) Effect of fluid and Na+ flux of varying luminal hydraulic resistance in rat colon in vivo. J Physiol 477:539–548

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ei Sakaguchi.

Additional information

Communicated by I. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T., Sakaguchi, E. Transport of bacteria across and along the large intestinal lumen of guinea pigs. J Comp Physiol B 176, 173–178 (2006). https://doi.org/10.1007/s00360-005-0039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0039-6

Keywords

Navigation