Skip to main content

Advertisement

Log in

A plant volatile alters the perception of sex pheromone blend ratios in a moth

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Mate finding in most moths is based on male perception of a female-emitted pheromone whose species specificity resides in component chemistry and proportions. Components are individually detected by specialized olfactory receptor neurons (ORNs) projecting into the macroglomerular complex (MGC) of the male brain. We asked how robust ratio recognition is when challenged by a plant volatile background. To test this, we investigated the perception of the pheromone blend in Agrotis ipsilon, a moth species whose females produce a blend of Z7-dodecenyl acetate (Z7-12:Ac), Z9-tetradecenyl acetate (Z9-14:Ac), and Z11-hexadecenyl acetate in a 4:1:4 ratio optimally attractive for males. First, we recorded the responses of specialist ORNs for Z7 and Z9 and showed that heptanal, a flower volatile, activated Z7 but not Z9 neurons. Then, we recorded intracellularly the responses of MGC neurons to various ratios and showed that heptanal altered ratio responses of pheromone-sensitive neurons. Finally, we analyzed the behavior of males in a wind tunnel and showed that their innate preference for the 4:1:4 blend was shifted in the presence of heptanal. Pheromone ratio recognition may thus be altered by background odorants. Therefore, the olfactory environment might be a selective force for the evolution of pheromone communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3  
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AL:

Antennal lobe

CAR/PDMS:

Carboxen/polydimethylsiloxane

DHS:

Dynamic head space analysis

FID:

Flame ionization detector

GC:

Gas chromatography

MGC:

Macroglomerular complex

MO:

Mineral oil

ORN:

Olfactory receptor neuron

PC:

Personal computer

Phe-ORN:

Pheromone receptor neuron

SPME:

Solid phase micro-extraction fibers

VPC:

Volatile plant compound

References

  • Allison JD, Cardé RT (2016) Pheromones: reproductive isolation and evolution in moths. Evolution, Behavior, and Application. In: Allison JD, Cardé RT (eds) Pheromone communication in moth. University of California Press, Berkeley, pp 11–23

    Google Scholar 

  • Anton S, Hansson BS (1995) Sex-pheromone and plant-associated odor processing in antennal lobe interneurons of male Spodoptera littoralis (Lepidoptera, Noctuidae). J Comp Physiol A 176:773–789

    Article  CAS  Google Scholar 

  • Anton S, Hansson BS (1999) Physiological mismatching between neurons innervating olfactory glomeruli in a moth. P Roy Soc Lond B Bio 266:1813–1820

    Article  Google Scholar 

  • Anton S, Lofstedt C, Hansson BS (1997) Central nervous processing of sex pheromones in two strains of the European corn borer Ostrinia nubilalis (Lepidoptera: Pyralidae). J exp Biol 200:1073–1087

    CAS  PubMed  Google Scholar 

  • Badeke E, Haverkamp A, Hansson BS, Sachse S (2016) A challenge for a male noctuid moth? Discerning the female sex pheromone against the background of plant volatiles. Front Physiol 7:143. https://doi.org/10.3389/fphys.2016.00143

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrozo RB, Gadenne C, Anton S (2010) Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect. J Exp Biol 213:2933–2939. https://doi.org/10.1242/jeb.043430

    Article  PubMed  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Blejec A (2005) Statistical method for detection of firing rate changes in spontaneously active neurons. Neurocomputing 65–66:557–563

    Article  Google Scholar 

  • Borrero-Echeverry F, Bengtsson B, Nakamuta K, Peter Witzgall P (2018) Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution 72:2225–2233. https://doi.org/10.1111/evo.13571

    Article  PubMed  PubMed Central  Google Scholar 

  • Causse R, Buès R, Barthes J, Toubon JF (1988) Mise en évidence expérimentale de nouveaux constituants des phéromones sexuelles de Scotia ipsilon Hufn. et Mamestra suasa Schiff. (Lepidopteres, Noctuidae). In: Colloques de l'INRA (46). Médiateurs chimiques: comportement et systématique des Lepidopteres. Application en agronomie. INRA, Paris, FRA, pp 75–82. ISBN 2-7380-0033-9

  • Chaffiol A, Kropf J, Barrozo RB, Gadenne C, Rospars JP, Anton S (2012) Plant odour stimuli reshape pheromonal representation in neurons of the antennal lobe macroglomerular complex of a male moth. J Exp Biol 215:1670–1680. https://doi.org/10.1242/jeb.066662

    Article  PubMed  Google Scholar 

  • Christensen TA, Hildebrand JG (1987) Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J Comp Physiol A 160:553–569

    Article  CAS  Google Scholar 

  • Christensen TA, Hildebrand JG, Tumlinson JH, Doolittle RE (1989) Sex pheromone blend of Manduca sexta: responses of central olfactory interneurons to antennal stimulation in male moths. Arch Insect Biochem 10:281–291

    Article  CAS  Google Scholar 

  • Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M (2019) Insect odorscapes: from plant volatiles to natural olfactory scenes. Front Physiol 10:972. https://doi.org/10.3389/fphys.2019.00972

    Article  PubMed  PubMed Central  Google Scholar 

  • Deisig N, Dupuy F, Anton S, Renou M (2014) Responses to pheromones in a complex odor world: sensory processing and behavior. Insects 5:399–422. https://doi.org/10.3390/insects5020399

    Article  PubMed  PubMed Central  Google Scholar 

  • Deisig N, Kropf J, Vitecek S, Pevergne D, Rouyar A, Sandoz JC, Lucas P, Gadenne C, Anton S, Barrozo R (2012) Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth. PLoS ONE 7:e33159. https://doi.org/10.1371/journal.pone.0033159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Feng B, Li H, Liu C, Zeng J, Pan L, Yu Q (2015) Field evaluation of Agrotis ipsilon (Lepidoptera: Noctuidae) pheromone blends and their application to monitoring moth populations in China. Environ Entomol 44:724–733. https://doi.org/10.1093/ee/nvv043

    Article  CAS  PubMed  Google Scholar 

  • Dupuy F, Rouyar A, Deisig N, Bourgeois T, Limousin D, Wycke MA, Anton S, Renou M (2017) A background of a volatile plant compound alters neural and behavioral responses to the sex pheromone blend in a moth. Front Physiol 8:79. https://doi.org/10.3389/fphys.2017.00079

    Article  PubMed  PubMed Central  Google Scholar 

  • Elzen GW, Williams HJ, Alois B, Stipanovic RD, Vinson SB (1985) Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography. J Agr Food Chem 33:1079–1082. https://doi.org/10.1021/jf00066a015

    Article  CAS  Google Scholar 

  • Gadenne C, Anton S (2000) Central processing of sex pheromone stimuli is differentially regulated by juvenile hormone in a male moth. J Insect Physiol 46:1195–1206

    Article  CAS  Google Scholar 

  • Gadenne C, Picimbon J-F, Becard J-M, Lalanne-Cassou B, Renou M (1997) Development and pheromone communication systems in hybrids of Agrotis ipsilon and Agrotis segetum (Lepidoptera: Noctuidae). J Chem Ecol 23:191–209

    Article  Google Scholar 

  • Gadenne C, Dufour MC, Anton S (2001) Transient post-mating inhibition of behavioural and central nervous responses to sex pheromone in an insect. P Roy Soc Lond B Bio 268:1631–1635

    Article  CAS  Google Scholar 

  • Gemeno C, Haynes KF (1998) Chemical and behavioral evidence for a third pheromone component in a north american population of the black cutworm moth, Agrotis ipsilon. J Chem Ecol 24:999–1011

    Article  CAS  Google Scholar 

  • Gemeno C, Lutfallah AF, Haynes KF (2000) Pheromone blend variation and cross-attraction among populations of the black cutworm moth (Lepidoptera: Noctuidae). Ann Entomol Soc Am 93:1322–1328

    Article  CAS  Google Scholar 

  • Gries G, Schaefer PW, Gries R, Liska J, Gotoh T (2001) Reproductive character displacement in Lymantria monacha from northern Japan ? J Chem Ecol 27:1163–1176

    Article  CAS  Google Scholar 

  • Gurba A, Guerin PM (2016) Short-chain alkanes synergise responses of moth pests to their sex pheromones. Pest Manag Sci 72:870–876

    Article  CAS  Google Scholar 

  • Hansson BS, Anton S (2000) Function and morphology of the antennal lobe: new developments. Annu Rev Entomol 45:203–231

    Article  CAS  Google Scholar 

  • Hartlieb E, Anton S, Hansson BS (1997) Dose-dependent response characteristics of antennal lobe neurons in the male moth Agrotis segetum (Lepidoptera: Noctuidae). J Comp Physiol A 181:469–476

    Article  Google Scholar 

  • Heinbockel T, Hildebrand J (1998) Antennal receptive fields of pheromone-responsive projection neurons in the antennal lobes of the male sphinx moth Manduca sexta. J Comp Physiol A 183:121–133

    Article  CAS  Google Scholar 

  • Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time to event data. Wiley series in probability and statistics. Wiley-Blackwell, New York

    Book  Google Scholar 

  • Jarriault D, Gadenne C, Lucas P, Rospars JP, Anton S (2010) Transformation of the sex pheromone signal in the noctuid moth Agrotis ipsilon: from peripheral input to antennal lobe output. Chem Senses 35:705–715. https://doi.org/10.1093/chemse/bjq069

    Article  PubMed  Google Scholar 

  • Kesselmeier J, Kuhn U, Wolf A, Andreae MO, Ciccioli P, Brancaleoni E, Frattoni M, Guenther A, Greenberg J, De Castro VP, de Olivae T, Tavarese T, Artaxo P (2000) Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atm Env 34:4063–4072

    Article  CAS  Google Scholar 

  • Kirkpatrick M, Nuismer SL (2004) Sexual selection can constrain sympatric speciation. Proc Biol Sci 271:687–693. https://doi.org/10.1098/rspb.2003.2645

    Article  PubMed  PubMed Central  Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom GL (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Knudsen GK, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kuebler LS, Olsson SB, Weniger R, Hansson BS (2011) Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuit. https://doi.org/10.3389/fncir.2011.00007

    Article  Google Scholar 

  • Marion-Poll F (1995) Object-oriented approach to fast display of electrophysiological data under MS-Windows. J Neurosc Meth 63:591–592

    Article  Google Scholar 

  • Martin JP, Lei H, Riffell JA, Hildebrand JG (2013) Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta. J Comp Physiol A 199:963–979. https://doi.org/10.1007/s00359-013-0849-z

    Article  CAS  Google Scholar 

  • McElfresh JS, Millar JG (2001) Geographic variation in the pheromone system of the Saturniid moth Emileuca eglanterina. Ecology 82:3505–3518. https://doi.org/10.1890/0012-9658(2001)082[3505:GVITPS]2.0.CO;2

    Article  Google Scholar 

  • Ochieng SA, Park KC, Baker TC (2002) Host plant volatiles synergise responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A 188:325–333

    Article  CAS  Google Scholar 

  • Party V, Hanot C, Said I, Rochat D, Renou M (2009) Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem Senses 34:763–774. https://doi.org/10.1093/chemse/bjp060

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Gadenne C, Becard JM, Clement JL, Sreng L (1997) Sex pheromone of the French black cutworm moth, Agrotis ipsilon (Lepidoptera: Noctuidae): identification and regulation of a multicomponent blend. J Chem Ecol 23:211–230

    Article  CAS  Google Scholar 

  • Pregitzer P, Schubert M, Breer H, Hansson BS, Sachse S, Krieger J (2012) Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens. Front Cell Neurosci 6:42. https://doi.org/10.3389/fncel.2012.00042

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Renou M, Gadenne C, Tauban D (1996) Electrophysiological investigations of pheromone-sensitive sensilla in the hybrids between two moth species. J Insect Physiol 42:267–277

    Article  CAS  Google Scholar 

  • Renou M, Party V, Rouyar A, Anton S (2015) Olfactory signal coding in an odor background. Biosystems. https://doi.org/10.1016/j.biosystems.2015.06.001

    Article  PubMed  Google Scholar 

  • Ritz C, Streibig JC (2008) Nonlinear regression with R. Springer, New York

    Google Scholar 

  • Rospars JP (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol Embryol 17:243–294

    Article  Google Scholar 

  • Rouyar A, Party V, Prešern J, Blejec A, Renou M (2011) A general odorant background affects the coding of pheromone stimulus intermittency in specialist olfactory receptor neurones. PLoS ONE 6:e26443

    Article  CAS  Google Scholar 

  • Rouyar A, Deisig N, Dupuy F, Limousin D, Wycke M-A, Renou M, Anton S (2015) Unexpected plant odor responses in a moth pheromone system. Front Physiol 6:148

    Article  Google Scholar 

  • Syed Z, Leal WS (2008) Mosquitoes smell and avoid the insect repellent. DEET. https://doi.org/10.1073/pnas.0805312105

    Article  Google Scholar 

  • Symonds MR, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228. https://doi.org/10.1016/j.tree.2007.11.009

    Article  PubMed  Google Scholar 

  • Trona F, Anfora G, Balkenius A, Bengtsson M, Tasin M, Knight A, Janz N, Witzgall P, Ignell R (2013) Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proc Biol Sci 280:20130267. https://doi.org/10.1098/rspb.2013.0267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers NJ, Christensen TA, Hildebrand JG (1998) Combinatorial odor discrimination in the brain: attractive and antagonist odor blends are represented in distinct combinations of uniquely identifable glomeruli. J Comp Neurol 400:35–56

    Article  CAS  Google Scholar 

  • Vitecek S, Maria A, Blais C, Duportets L, Gaertner C, Dufour MC, Siaussat D, Debernard S, Gadenne C (2013) Is the rapid post-mating inhibition of pheromone response triggered by ecdysteroids or other factors from the sex accessory glands in the male moth Agrotis ipsilon? Horm Behav 63:700–708. https://doi.org/10.1016/j.yhbeh.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  • Wiedenmyer C, Friedfeld S, Baugh W, Greenberg J, Guenther A, Fraser M, Allen D (2011) Measurement and analysis of atmospheric concentrations of isoprene and its reaction products in central Texas. Atm Env 35:1001–1013

    Article  Google Scholar 

  • Wu W, Anton S, Löfstedt C, Hansson BS (1996) Discrimination among pheromone component blends by interneurons in male antennal lobes of two populations of the turnip moth, Agrotis segetum. P Natl Acad Sci USA 93:8022–8027

    Article  CAS  Google Scholar 

  • Wynne JW, Keaster AJ, Gerhardt KO, Krause GF (1991) Plant species identified as food sources for adult black cutworm (Lepidoptera:Noctuidae) in Northern Missouri. J Kansas Entomol Soc 64:381–387

    Google Scholar 

  • Yang ZH, Bengtsson M, Witzgall P (2004) Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J Chem Ecol 30:619–629

    Article  CAS  Google Scholar 

  • Zhu Y, Keaster AJ, Gerhard KO (1993) Field observations on attractiveness of selected blooming plants to noctuid moths and electroantennogram responses of black cutworm (Lepidoptera: Noctuidae) moths to flower volatiles. Environ Entomol 22:162–166

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Corinne Chauvet and Joane Louison for insect rearing. This work was funded by grants from the French National Research funding Agency (ANR-15-CE02-0010–01 ODORSCAPE) and the Plant Health and Environment Department (SPE) of the French National Agricultural Research Institute (INRA). Experiments were performed according to French animal welfare legislation, requiring no specific authorization for experimentation on insects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Renou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, A., Bourgeois, T., Munoz, A. et al. A plant volatile alters the perception of sex pheromone blend ratios in a moth. J Comp Physiol A 206, 553–570 (2020). https://doi.org/10.1007/s00359-020-01420-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-020-01420-y

Keywords

Navigation