Skip to main content
Log in

Neuronal encoding of sound, gravity, and wind in the fruit fly

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they ‘freeze’ in place. Based on recent studies, Johnston’s hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston’s organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMMC:

Antennal mechanosensory and motor center

eCFP:

Enhanced cyan fluorescent protein

eYFP:

Enhanced yellow fluorescent protein

GFP:

Green fluorescent protein

JO:

Johnston’s organ

NAN :

Nanchung

IAV :

Inactive

ORNs:

Olfactory sensory neurons

SEG:

Subesophageal ganglion

TRP:

Transient receptor potential

UAS:

Upstream activation sequence

VLP:

Ventrolateral protocerebrum

References

  • Ai H, Nishino H, Itoh T (2007) Topographic organization of sensory afferents of Johnston’s organ in the honeybee brain. J Comp Neurol 502:1030–1046

    Article  PubMed  Google Scholar 

  • Albert JT, Nadrowski B, Göpfert MC (2007) Mechanical signatures of transducer gating in the Drosophila ear. Curr Biol 17:1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541

    Article  PubMed  Google Scholar 

  • Beckingham KM, Texada MJ, Baker DA, Munjaal R, Armstrong JD (2005) Genetics of graviperception in animals. Adv Genet 55:105–145

    Article  PubMed  CAS  Google Scholar 

  • Bennet-Clark HC, Ewing AW (1970) The love song of the fruit fly. Sci Am 223:85–90

    Article  PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    Article  PubMed  CAS  Google Scholar 

  • Boo KS, Richards AG (1975) Fine structure of scolopidia in Johnston’s organ of male Aedes aegypti (L.) (Diptera: Culicidae). Int J Insect Morphol Embryol 4:549–566

    Article  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ, Das G, Gohl D, Silies M, Certel S, Waddell S (2012) Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:433–437

    Article  PubMed  CAS  Google Scholar 

  • Büttner-Ennever JA (1999) A review of otolith pathways to brainstem and cerebellum. Ann N Y Acad Sci 871:51–64

    Article  PubMed  Google Scholar 

  • Caldwell JC, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457–474

    Article  PubMed  Google Scholar 

  • Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, Shih CT, Wu JJ, Wang GT, Chen YC, Wu CC, Chen GY, Ching YT, Lee PC, Lin HH, Hsu HW, Huang YA, Chen JY, Chiang HJ, Lu CF, Ni RF, Yeh CY, Hwang JK (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11

    Article  PubMed  CAS  Google Scholar 

  • Childress SA, McIver SB (1984) Morphology of the deutocerebrum of female Aedes-aegypti (Diptera, Culicidae). Can J Zool 62:1320–1328

    Article  Google Scholar 

  • Dong PD, Dicks JS, Panganiban G (2002) Distal-less and homothorax regulate multiple targets to pattern the Drosophila antenna. Development 129:1967–1974

    PubMed  CAS  Google Scholar 

  • Dong PD, Todi SV, Eberl DF, Boekhoff-Falk G (2003) Drosophila spalt/spalt-related mutants exhibit Townes-Brocks’ syndrome phenotypes. Proc Natl Acad Sci USA 100:10293–10298

    Article  PubMed  CAS  Google Scholar 

  • Dreller C, Kirchner WH (1993) Hearing in honeybees—localization of the auditory sense organ. J Comp Physiol A 173:275–279

    Article  Google Scholar 

  • Eberl DF, Boekhoff-Falk G (2007) Development of Johnston’s organ in Drosophila. Int J Dev Biol 51:679–687

    Article  PubMed  CAS  Google Scholar 

  • Eberl DF, Duyk GM, Perrimon N (1997) A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc Natl Acad Sci USA 94:14837–14842

    Article  PubMed  CAS  Google Scholar 

  • Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988

    PubMed  CAS  Google Scholar 

  • Effertz T, Wiek R, Göpfert MC (2011) NompC TRP channel is essential for Drosophila sound receptor function. Curr Biol 21:592–597

    Article  PubMed  CAS  Google Scholar 

  • Effertz T, Nadrowski B, Piepenbrock D, Albert JT, Göpfert MC (2012) Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nat Neurosci 15:1198–1200

    Article  PubMed  CAS  Google Scholar 

  • Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA 100:5514–5519

    Article  PubMed  Google Scholar 

  • Göpfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000

    Article  PubMed  Google Scholar 

  • Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Grau Y, Jan LY, Jan YN (1993) Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73:1307–1321

    Article  PubMed  CAS  Google Scholar 

  • Johnston J, Templeton A (1982) Dispersal and clines in Opuntia breeding Drosophila mercatorum and Drosophila hydei at Kamuela, Hawaii. In: Barker JSF, Starmer WT (eds) Ecological Genetics and Evolution. Academic Press, Sydney, pp 241–256

    Google Scholar 

  • Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499:317–356

    Article  PubMed  Google Scholar 

  • Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Göpfert MC, Ito K (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kamikouchi A, Albert JT, Göpfert MC (2010a) Mechanical feedback amplification in Drosophila hearing is independent of synaptic transmission. Eur J Neurosci 31:697–703

    Article  PubMed  Google Scholar 

  • Kamikouchi A, Wiek R, Effertz T, Göpfert MC, Fiala A (2010b) Transcuticular optical imaging of stimulus-evoked neural activities in the Drosophila peripheral nervous system. Nat Protoc 5:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Kang L, Gao J, Schafer WR, Xie Z, Xu XZ (2010) C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 67:381–391

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kohatsu S, Koganezawa M, Yamamoto D (2011) Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69:498–508

    Article  PubMed  CAS  Google Scholar 

  • Kohlhase J, Wischermann A, Reichenbach H, Froster U, Engel W (1998) Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet 18:81–83

    Article  PubMed  CAS  Google Scholar 

  • Lai JS, Lo SJ, Dickson BJ, Chiang AS (2012) Auditory circuit in the Drosophila brain. Proc Natl Acad Sci USA 109:2607–2612

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5:e11012

    Article  PubMed  Google Scholar 

  • Lehnert BP, Baker AE, Gaudry Q, Chiang AS, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 77:115–128

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Placais PY, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H (2012) A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488:512–516

    Article  PubMed  CAS  Google Scholar 

  • Morley EL, Steinmann T, Casas J, Robert D (2012) Directional cues in Drosophila melanogaster audition: structure of acoustic flow and inter-antennal velocity differences. J Exp Biol 215:2405–2413

    Article  PubMed  Google Scholar 

  • Nadrowski B, Albert JT, Gopfert MC (2008) Transducer-based force generation explains active process in Drosophila hearing. Curr Biol 18:1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Nadrowski B, Effertz T, Senthilan PR, Göpfert MC (2011) Antennal hearing in insects—new findings, new questions. Hearing Res 273:7–13

    Article  Google Scholar 

  • Riabinina O, Dai M, Duke T, Albert JT (2011) Active process mediates species-specific tuning of Drosophila ears. Curr Biol 21:658–664

    Article  PubMed  CAS  Google Scholar 

  • Richardson R, Johnston J (1975) Behavioral components of dispersal in Drosophila mimica. Oecologia 20:287–299

    Article  Google Scholar 

  • Roth LM (1948) A study of mosquito behaviour. An experimental laboratory study of the sexual behaviour of Aedes aegypti (Linnaeus). Am Midl Nat 40:265–352

    Article  Google Scholar 

  • Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66:15–36

    Article  PubMed  CAS  Google Scholar 

  • Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Mobius W, Howard J, Göpfert MC (2012) Drosophila auditory organ genes and genetic hearing defects. Cell 150:1042–1054

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Kato K, Kamikouchi A, Ito K (2005) Analysis of the distribution of the brain cells of fruit fly by an automatic cell counting algorithm. Physica A Stat Phys 350:144–149

    Article  Google Scholar 

  • Sun YS, Liu L, Ben-Shahar Y, Jacobs JS, Eberl DF, Welsh MJ (2009) TRPA channels distinguish gravity sensing from hearing in Johnston’s organ. Proc Natl Acad Sci USA 106:13606–13611

    Article  PubMed  CAS  Google Scholar 

  • Tackels-Horne D, Toburen A, Sangiorgi E, Gurrieri F, de Mollerat X, Fischetto R, Causio F, Clarkson K, Stevenson RE, Schwartz CE (2001) Split hand/split foot malformation with hearing loss: first report of families linked to the SHFM1 locus in 7q21. Clin Genet 59:28–36

    Article  PubMed  CAS  Google Scholar 

  • Tauber E, Eberl DF (2003) Acoustic communication in Drosophila. Behav Process 64:197–210

    Article  Google Scholar 

  • Todi SV, Franke JD, Kiehart DP, Eberl DF (2005) Myosin VIIA defects, which underlie the Usher 1B syndrome in humans, lead to deafness in Drosophila. Curr Biol 15:862–868

    Article  PubMed  CAS  Google Scholar 

  • Tootoonian S, Coen P, Kawai R, Murthy M (2012) Neural representations of courtship song in the Drosophila brain. J Neurosci 32:787–798

    Article  PubMed  CAS  Google Scholar 

  • Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S, Kume K (2012) Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci 15:1516–1523

    Article  PubMed  CAS  Google Scholar 

  • Vater M, Kössl M (2011) Comparative aspects of cochlear functional organization in mammals. Hearing Res 273:89–99

    Article  Google Scholar 

  • Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  PubMed  CAS  Google Scholar 

  • Vosshall LB, Wong AM, Axel R (2000) An olfactory sensory map in the fly brain. Cell 102:147–159

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117:981–991

    Article  PubMed  CAS  Google Scholar 

  • Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD et al (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:60–61

    Article  PubMed  CAS  Google Scholar 

  • Wilson RI, Mainen ZF (2006) Early events in olfactory processing. Annu Rev Neurosci 29:163–201

    Article  PubMed  CAS  Google Scholar 

  • Wishart G, Riordan DF (1959) Flight responses to various sounds by adult males of Aedes aegypti. Can Entomol 91:181–191

    Article  Google Scholar 

  • Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241

    Article  PubMed  CAS  Google Scholar 

  • Yack JE (2004) The structure and function of auditory chordotonal organs in insects. Microsc Res Techniq 63:315–337

    Article  Google Scholar 

  • Yager DD (1999) Structure, development, and evolution of insect auditory systems. Microsc Res Techniq 47:380–400

    Article  CAS  Google Scholar 

  • Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, Meltzer S, Jan LY, Jan YN (2013) Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225

    Article  PubMed  CAS  Google Scholar 

  • Yorozu S, Wong A, Fischer BJ, Dankert H, Kernan MJ, Kamikouchi A, Ito K, Anderson DJ (2009) Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458:201–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Human Frontier Science Program; PRESTO program “Decoding and controlling brain information” from the Japan Science and Technology Agency; and a Grant-in-Aid for Scientific Research on Innovative Areas “Systems Molecular Ethology” from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azusa Kamikouchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, E., Kamikouchi, A. Neuronal encoding of sound, gravity, and wind in the fruit fly. J Comp Physiol A 199, 253–262 (2013). https://doi.org/10.1007/s00359-013-0806-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0806-x

Keywords

Navigation