Skip to main content

Advertisement

Log in

Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both?

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In the present study, we demonstrate the role of the trigeminal system in the perception process of different magnetic field parameters by heartbeat conditioning, i.e. a significantly longer interval between two consecutive heartbeats after magnetic stimulus onset in the salmonid fish Oncorhynchus mykiss. The electrocardiogram was recorded with subcutaneous silver wire electrodes in freely swimming fish. Inactivation of the ophthalmic branch of the trigeminal nerve by local anaesthesia revealed its role in the perception of intensity/inclination of the magnetic field by abolishing the conditioned response (CR). In contrast, experiments with 90° direction shifts clearly showed the normal conditioning effect during trigeminal inactivation. In experiments under red light and in darkness, CR occurred in case of both the intensity/inclination stimulation and 90° direction shifts, respectively. With regard to the data obtained, we propose the trigeminal system to perceive the intensity/inclination of the magnetic field in rainbow trouts and suggest the existence of another light-independent sensory structure that enables fish to detect the magnetic field direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beason CB, Nichols JE (1984) Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309:151–153

    Article  Google Scholar 

  • Begall S, Cerveny J, Neef J, Vojtech O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci USA 105:13451–13455

    Article  PubMed  CAS  Google Scholar 

  • Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite VA, De Perera TB (2005) Short-range orientation in fish: how fish map space. Mar Fresh Behav Physiol 39(1):37–47

    Article  Google Scholar 

  • Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W (1990) Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae). Experientia 46:528–530

    Article  PubMed  CAS  Google Scholar 

  • Burda H, Begall S, Cerveny J, Neef J, Němec P (2009) Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci USA 106:5708–5713

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  PubMed  CAS  Google Scholar 

  • Cerveny J, Begall S, Koubek P, Nouvakova P, Burda H (2011) Directional preference may enhance hunting accuracy in foraging foxes. Biol Lett. doi:10.1098/rsbl.2010.1145

  • Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeon orient to geomagnetic intensity during homing. Proc R Soc B. doi:10.1098/rspb.2007.3768

  • Deutschlander ME, Borland SC, Phillips JB (1999) Extraocular magnetic compass in newts. Nature 400:324–325

    Article  PubMed  CAS  Google Scholar 

  • Diebel CE, Proksch R, Green CR, Neilson P, Walker MM (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302

    Article  PubMed  CAS  Google Scholar 

  • Dommer DH, Gazzolo PJ, Painter MS, Phillips JB (2008) Magnetic compass orientation by larval Drosophila melanogaster. J Insect Physiol 54:719–726

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg G, Fleissner G, Schuchardt K, Kuebacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5(2):e9231. doi:10.1371/journal.pone

    Article  PubMed  Google Scholar 

  • Fischer JH, Freake MJ, Borland SC, Phillips JB (2001) Evidence for the use of magnetic map information by an amphibian. Anim Behav 62:1–10

    Article  Google Scholar 

  • Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    Article  PubMed  CAS  Google Scholar 

  • Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G (2007) A novel concept of Fe-mineral based magnetoreception: histological and physiochemical data from the upper beak of homing pigeons. Naturwissenschaften 94:631–642

    Article  PubMed  CAS  Google Scholar 

  • Hanson M, Westerberg H (1987) Occurrence of magnetic material in teleosts. Comp Biochem Physiol A 86:169–172

    Article  PubMed  CAS  Google Scholar 

  • Hanson M, Karlon L, Westerberg H (1984) Magnetic material in the European eel (Anguilla anguilla L.). Comp Biochem Physiol A 77:221–224

    Article  Google Scholar 

  • Harada Y (2008) The relation between the migration function of birds and fishes and their lagenal function. Acta Otolaryngol 128:432–439

    Article  PubMed  Google Scholar 

  • Harada Y, Taniguchi M, Namatame H, Iida A (2001) Magnetic materials in the otholiths of fish and birds lagena and their function. Acta Otolaryngol 121:590–599

    Article  PubMed  CAS  Google Scholar 

  • Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution and ecology. Wiley, New York

    Google Scholar 

  • Hellinger J, Hoffmann K-P (2009) Magnetic field perception in the rainbow trout, Oncorhynchus mykiss. J Comp Physiol A 195:873–879

    Article  Google Scholar 

  • Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M (2006) Bat orientation using Earth’s magnetic field. Nature 444:702

    Article  PubMed  CAS  Google Scholar 

  • Holland RA, Kirschvink JL, Doak TG, Wikelski M (2008) Bats use magnetite to detect the earths magnetic field. PLoS ONE 3:e1676

    Article  PubMed  Google Scholar 

  • Holland RA, Borissov I, Siemers BM (2010) A nocturnal mammal, the greater mouse-eared bat calibrates a magnetic compass by the sun. Proc Natl Acad Sci USA 107:6941–6945

    Article  PubMed  CAS  Google Scholar 

  • Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712

    Article  PubMed  CAS  Google Scholar 

  • Keary N, Rudolph T, Voss J, Thalau P, Wiltschko R, Wiltschko W (2009) Oscillating magnetic field disrupts magnetic orientation in zebrafinches, Taenopygia guttata. Front Zool 6:25

    Article  PubMed  Google Scholar 

  • Kimchi T, Etienne AS, Terkel J (2004) A subterranean mammal uses the magnetic compass for path integration. Proc Natl Acad Sci 101:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink JL, Walker MM, Chang SB, Dizon AE, Peterson KA (1985) Chains of single domain magnetite in the Chinook salmon, Oncorhynchus tschawytscha. J Comp Physiol A 157:375–381

    Article  Google Scholar 

  • Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H (2007) Chemical magnetoreception: bird chryptochrome 1a is excited by blue light and form long-lived radical-pairs. PLoS ONE 2(10):e1106. doi:10.1371/journals.pone.0001106

    Article  PubMed  Google Scholar 

  • Light P, Salmon M, Lohmann KJ (1993) Geomagnetic orientation of loggerhed sea turtles: evidence for an inclination compass. J Exp Biol 182:1–10

    Google Scholar 

  • Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the leatherback seaturtle. Bio Bull 185:149–151

    Article  Google Scholar 

  • Lohmann KJ, Lohmann CMF (1994) Detection of magnetic inclination angles by sea turtles: a possible mechanism for detecting latitude. J Exp Biol 194:23–32

    PubMed  Google Scholar 

  • Lohmann KJ, Lohmann CMF (1996) Orientation and open-sea navigation in sea turtles. J Exp Biol 199:73–81

    PubMed  Google Scholar 

  • Lohmann KJ, Pentchev ND, Nevitt GA, Stetten GD, Zimmer-Faust RK, Jarrard HE, Boles LC (1995) Magnetic orientation in spiny lobsters in the ocean: experiments with underseas coil systems. J Exp Biol 198:2041–2048

    PubMed  Google Scholar 

  • Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909–910

    Article  PubMed  CAS  Google Scholar 

  • Lohmann JK, Putman NF, Lohmann CM (2008) Geomagnetic imprinting: a unifying hypothesis of long-distance migration natal homing in salmon and sea turtles. Proc Natl Acad Sci USA 205:19096–19101

    Article  Google Scholar 

  • Lohmann KJ, Putman NF, Lohmann CMF (2011) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:1–7

    Google Scholar 

  • Marhold S, Burda H, Wiltschko W (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423

    Article  CAS  Google Scholar 

  • Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588

    Article  PubMed  Google Scholar 

  • Moore A, Riley WD (2009) Magnetic material associated with the lateral line of the European eel Anguilla anguilla. J Fish Biol 74:1629–1634

    Article  PubMed  CAS  Google Scholar 

  • Moore A, Freake SM, Thomas IM (1990) Magnetic particles in the lateral line of the Atlantic salmon, Salmo salar. Philos Trans Soc Lond B 329:11–15

    Article  Google Scholar 

  • Mora CV, Davison M, Wild M, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neural-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299

    Article  PubMed  CAS  Google Scholar 

  • Muheim R, Edgar NM, Sloan KA, Phillips JB (2006) Magnetic compass orientation in C57BL/6J mice. Learn Behav 34:366–377

    Article  PubMed  Google Scholar 

  • Nießner C, Denzau S, Gross JC, Peichl L, Bischoff HJ, Fleissner G, Wiltschko W, Wiltschko R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS ONE 6(5):e20091. doi:10.1371/journal.pone.002009

    Article  PubMed  Google Scholar 

  • Nishi T, Kawamura G (2005) Anguilla japonica is already magnetosensitive at the glass eel phase. J Fish Biol 67:1213–1224

    Article  Google Scholar 

  • Nishi T, Kamawura G, Matsumoto K (2004) Magnetic sense in the Japanese eel, Anguilla japonica. J Exp Biol 207:2965–2970

    Article  PubMed  Google Scholar 

  • Palmer LM, Mensinger AF (2004) Effect of the anaesthetic tricaine (MS-222) on the nerve activity in the anterior lateral line of the oyster toadfish Opsanus tau. J Neurophysiol 92:1034–1041

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB (1986) Magnetic compass orientation in the red spotted newt (Notophthalmus viridescens). J Comp Physiol A 158:103–109

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB, Borland SC (1992a) Behavioural evidence for the use of a light dependent magnetroreception mechanism by a vertebrate. Nature 359:142–144

    Article  Google Scholar 

  • Phillips JB, Borland SC (1992b) Magnetic compass orientation is eliminated under near infrared-light in the eastern red spotted newt Notophtalmus viridescens. Anim Behav 44:796–797

    Article  Google Scholar 

  • Phillips JB, Borland SC (1992c) Wavelength specific effects of light on magnetic compass orientation in the eastern red-spotted newt. Ethol Ecol Evol 4:33–42

    Article  Google Scholar 

  • Putman NF, Lohmann KJ (2008) Compatibility of magnetic imprinting and secular variation. Curr Biol 18:596–597

    Article  Google Scholar 

  • Putman NF, Endres CS, Lohmann CMF, Lohmann KJ (2011) Longitude perception and bicoordinate magnetic maps in sea turtles. Curr Biol 21:463–466

    Article  PubMed  CAS  Google Scholar 

  • Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol A 137:243–248

    Article  Google Scholar 

  • Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol A 147:547–552

    Article  Google Scholar 

  • Quinn TP, Merrill RT, Brannon EL (1981) Magnetic field detection in sockeye salmon. J Exp Zool 217:137–142

    Article  Google Scholar 

  • Rickli M, Leuthold RH (1988) Homing in harvester termites: Evidence of magnetic orientation. Ethology 77:209–216

    Article  Google Scholar 

  • Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    Article  PubMed  CAS  Google Scholar 

  • Schiffner I, Fuhrmann P, Wiltschko R (2011) Tracking pigeons in a magnetic anomaly and in magnetically “quiet” terrain. Naturwissenschaften 98:575–581

    Article  PubMed  CAS  Google Scholar 

  • Schulten K, Swenberg CE (1978) A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z Phys Chem 111:1–5

    Article  Google Scholar 

  • Semm P, Demaine C, Wiltschko W (1984) Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol A 155:283–288

    Article  Google Scholar 

  • Sherbakov D, Winklehofer M, Petersen N, Steidle J, Hilbig R, Blum M (2005) Magnetosensation in zebrafish. Curr Biol 15:161–162

    Article  Google Scholar 

  • Späth M, Schweickert W (1977) The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system. Naunyn Schmiedebergs Arch Pharmacol 297:9–16

    Article  PubMed  Google Scholar 

  • Stapput K, Thalau P, Wiltschko R, Wiltschko W (2008) Orientation of birds in total darkness. Curr Biol 18:602–606

    Article  PubMed  CAS  Google Scholar 

  • Tesch FW (1974) Influence of geomagnetism and salinity on the direction choice of eels. Helgol Meeresunters 26:382–392

    Article  Google Scholar 

  • Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R (2006) The magnetic compass mechanisms of birds and rodents are based on different physical principles. J R Soc Interface 3:583–587

    Article  PubMed  Google Scholar 

  • Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages and not magnetosensitive neurons. Nature 484:367–371

    PubMed  CAS  Google Scholar 

  • Vácha M (2006) Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana. J Exp Biol 209:3882–3886

    Article  PubMed  Google Scholar 

  • Vácha M, Soukopova H (2004) Magnetic orientation in the mealworm beetle Tenebrio and the effect of light. J Exp Biol 207:1241–1248

    Article  PubMed  Google Scholar 

  • Vácha M, Půžová T, Kvíćalová M (2009) Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212:3473–3477

    Article  PubMed  Google Scholar 

  • Vilches-Troja J, Dunn RF, O’Leary DP (1984) Relationship of the vestibular hair cells to magnetic particles in the otholith of the guitarfish sacculus. J Comp Neurol 226:489–494

    Article  Google Scholar 

  • Voss J, Keary N, Bischoff H-J (2007) The use of the geomagnetic field for short distance orientation in zebra finches. Neuro Rep 18:1053–1058

    Google Scholar 

  • Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin, pp 143–151

    Google Scholar 

  • Walker MM (1984) Learned magnetic field discrimination in the yellowfin thuna, Thunnus albacares. J Comp Physiol A 155:673–679

    Article  Google Scholar 

  • Walker MM (1998) On a wing and a vector: a model for magnetic navigation by homing pigeons. J Theor Biol 192:341–349

    Article  PubMed  Google Scholar 

  • Walker MM (2008) A model for encoding of magnetic field intensity by magnetite based magnetoreceptor cells. J Theor Biol 250:85–91

    Article  PubMed  CAS  Google Scholar 

  • Walker MM, Bitterman ME (1985) Conditioned responding to magnetic fields by honeybees. J Comp Physiol A 157:67–71

    Article  Google Scholar 

  • Walker MM, Bittermann ME (1989) Attached magnets impair magnetic field discrimination in honeybees. J Exp Biol 141:447–451

    Google Scholar 

  • Walker MM, Quinn TP, Kirschvink JL, Groot C (1988) Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka. J Exp Biol 140:51–63

    PubMed  CAS  Google Scholar 

  • Walker MM, Diebel CE, Pankhurst PM, Montgomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Pan Y, Parsons S, Walker MM, Zhang S (2007) Bats respond to polarity of a magnetic field. Proc R Soc B 274:2901–2905

    Article  PubMed  Google Scholar 

  • Williams MN, Wild JM (2001) Trigeminally innervated iron-containing structures in the beak of homing pigeons, and other birds. Brain Res 889:243–246

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W (1974) Evidence for an innate magnetic compass in garden warblers. Naturwissenschaften 61:406–407

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Coil systems. In: Zoophysiology: magnetic orientation in animals. Springer, Heidelberg, pp 9–10

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (1996) Magnetic orientation in birds. J Exp Biol 199:29–38

    Article  PubMed  Google Scholar 

  • Wiltschko W, Wiltschko R (1999) Light-dependent magnetoreception in birds: does directional information change with light intensity? Naturwissenschaften 87:36–40

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2001) Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J Exp Biol 204:3295–3302

    PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2006) Magnetoreception. Bio Essays 28:157–168

    Google Scholar 

  • Wiltschko W, Wiltschko R (2007) Magnetoreception in birds: two receptors for two different tasks. J Ornithol 148(Suppl):S61–S76

    Article  Google Scholar 

  • Wiltschko R, Nohr D, Wiltschko W (1981) Pigeons with a deficient sun compass use the magnetic compass. Science 214:343–345

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Gesson M, Wiltschko R (2001) Magnetic compass orientation of European robins under 565 nm green light. Naturwissenschaften 88:387–390

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Möller A, Gesson M, Noll C, Wiltschko R (2004) Light-dependent magnetoreception in birds: analysis of the behavior under red light after pre-exposure to red light. J Exp Biol 207:1193–1202

    Article  PubMed  Google Scholar 

  • Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W (2010a) The role of magnetite-based receptors in the beak in pigeon homing. Curr Biol 20:1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko R, Stapput K, Thalau P, Wiltschko W (2010b) Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface. doi:10.1098/rsif.2009.0367.focus

  • Wiltscko R, Schiffner I, Wiltschko W (2009) A strong magnetic anomaly affects pigeon navigation. J Exp Biol 212:2983–2990

    Article  Google Scholar 

  • Wu LQ, Dickman JD (2011) Magnetoreception in the avian brain in part mediated by the inner ear lagena. Curr Biol 21:418–423

    Article  PubMed  CAS  Google Scholar 

  • Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments on earlier versions of the manuscript and Andre Steiner for critically reading the manuscript. Klaus-Peter Hoffmann was supported by the ZEN Program of the Hertie Foundation. The experiments were approved by the local authorities (Regierungspräsidium Arnsberg) and carried out in accordance with the Deutsche Tierschutzgesetz of 12 April 2001, the European Communities Council Directive of November 1986 (S6 609) and NIH guidelines for care and use of animals for experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hellinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellinger, J., Hoffmann, KP. Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both?. J Comp Physiol A 198, 593–605 (2012). https://doi.org/10.1007/s00359-012-0732-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0732-3

Keywords

Navigation