Skip to main content

Advertisement

Log in

The oscar, Astronotus ocellatus, detects and discriminates dipole stimuli with the lateral line system

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We studied the role of the lateral line system for detection and discrimination of dipole stimuli in the oscar, Astronotus ocellatus (Family Cichlidae), and determined detection thresholds in still water and frequency discrimination capabilities in still and turbulent water. Average detection threshold of six animals for a 100-Hz dipole stimulus was 0.0059 μm peak-to-peak water displacement at the surface of the fish. After inactivation of the neuromast receptor organs of the lateral line system with the antibiotic streptomycin, dipole detection was reduced, but recovered within 2–4 weeks. This suggests that the oscar relied strongly on hydrodynamic information received by the lateral line system. Five oscars learned to discriminate a 100-Hz stimulus from 70 Hz and lower frequencies. When turbulence was introduced into the experimental tank, fish were still able to discriminate 100 Hz from frequencies 70 Hz and lower indicating that frequency discrimination mediated by the lateral line system was not reduced in turbulent water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Latif H, Hassan ES, Campenhausen Cv (1990) Sensory performance of blind Mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239

    Article  PubMed  CAS  Google Scholar 

  • Bassettt DK, Carton AG, Momtgomery JC (2006) Flowing water decreases hydrodynamic signal detection in a fish with an epidermal lateral line system. Mar Fresh Res 57:611–617

    Article  Google Scholar 

  • Blaxter JHS, Fuiman LA (1989) Function of the free neuromasts of marine teleost larvae. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 481–499

    Chapter  Google Scholar 

  • Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface feeding fish Aplocheilus lineatus. J Comp Physiol A 140:163–172

    Article  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progess in Zoology, vol 41. Gustav Fischer, Stuttgart, pp 1–115

    Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwi 67:624–625

    Article  Google Scholar 

  • Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fish Aplocheilus lineatus––a prerequisite for prey localization? J Comp Physiol A 143:485–490

    Article  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface feeding fish: Anatomy, physiology and behaviour. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 501–526

    Chapter  Google Scholar 

  • Braun C, Coombs S (2010) Vibratory sources as compound stimuli for the octavolateralis systems: dissection of specific stimulation channels using multiple behavioral approaches. J Exp Psychol Anim Behav Proc 36:243–257

    Article  Google Scholar 

  • Burt de Perera T (2004a) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68:291–295

    Article  Google Scholar 

  • Burt de Perera T (2004b) Fish can encode order in their spatial map. Proc Royal Soc Lond, Series B 271:2131–2134

    Article  Google Scholar 

  • Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190:109–129

    PubMed  CAS  Google Scholar 

  • Coombs S, Conley RA (1997) Dipole source localization by the mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180:401–415

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J (1989) Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 299–319

    Chapter  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer-Verlag, New York, pp 319–362

    Chapter  Google Scholar 

  • Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195:279–297

    Article  Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348

    PubMed  CAS  Google Scholar 

  • Dailey DD, Braun CB (2009) The detection of pressure fluctuations, sonic audition, is the dominant mode of dipole-source detection in goldfish (Carassius auratus). J Exp Psychol Anim Behav Proc 35:212–223

    Article  Google Scholar 

  • Denton EJ, Gray JAP (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 229–246

    Chapter  Google Scholar 

  • Elepfandt A, Seiler B, Aichler B (1985) Water wave frequency discrimination in the clawed frog, Xenopus laevis. J Comp Physiol A 157:255–261

    Article  Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954

    Article  PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Directional response properties of saccula afferents of the toadfish, Opsanus tau. Hear Res 111:1–21

    Article  PubMed  CAS  Google Scholar 

  • Fay RR, Edds-Walton PL, Highstein SM (1994) Directional sensitivity of saccular afferents of the toadfish to linear acceleration at audio frequencies. Biol Bull 187:258–259

    PubMed  CAS  Google Scholar 

  • Frühbeis B (1984) Verhaltensphysiologische Untersuchungen zur Frequenzunterscheidung und Empfindlichkeit durch das Seitenlinienorgan des blinden Höhlenfisches Anoptichthys jordani. Dissertation, Universität Mainz

  • Harris GG, van Bergeijk WA (1962) Evidence that lateral line organ responds to near field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Article  Google Scholar 

  • Harris JA, Cheng AG, Cunningham LL, MacDonals G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). JARO 4:219–234

    Article  PubMed  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 217–228

    Chapter  Google Scholar 

  • Hoekstra D, Janssen J (1985) Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environ Biol Fish 12:111–117

    Article  Google Scholar 

  • Janssen J (2004) Lateral line sensory ecology. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish. Adaptations for the reception of natural stimuli. Narosa, New Delhi, pp 231–264

    Google Scholar 

  • Janssen J, Corcoran J (1993) Lateral line stimuli can override vision to determine sun fish strike trajectory. J Exp Biol 176:299–305

    PubMed  CAS  Google Scholar 

  • Jones TA, Nelson RC (1992) Recovery of vestibular function following hair cell destruction by streptomycin. Hear Res 62:181–186

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, New York, pp 187–216

    Chapter  Google Scholar 

  • Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206:59–70

    Article  PubMed  Google Scholar 

  • Kaus S (1987) The effect of aminoglycoside antibiotics on the lateral line organ of Aplocheilus lineatus (Cyprinodontidae). Acta Otolaryngol 103:291–298

    Google Scholar 

  • Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: the auditory brainstem response. J Comp Physiol A 182:307–318

    Article  PubMed  CAS  Google Scholar 

  • Kullander SO (1986) Cichlid fishes of the Amazon River drainage of Peru. Swedish Museum of Natural History, Stockholm, 431 p

  • Lu Z, Popper AN, Fay RR (1996) Behavioral detection of acoustic particle motion by a teleost fish (Astronotus ocellatus): sensitivity and directionality. J Comp Physiol A 179:227–233

    Article  PubMed  CAS  Google Scholar 

  • Matssura S, Ikeda K, Furukawa Z (1971) Effects of streptomycin, kanamycin, quinine, and other drugs on the microphonic potentials of goldfish sacculus. Jap J Physiol 21:579–590

    Article  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 285–298

    Chapter  Google Scholar 

  • Nauroth IE, Mogdans J (2009) Goldfish and oscars have comparable responsiveness to dipole stimuli. Naturwi 96:1432–1904

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of caniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer-Verlag, New York, pp 17–78

    Chapter  Google Scholar 

  • Page LM, Burr BM (1991) A field guide to freshwater fishes of North America north of Mexico. Houghton Mifflin Company, Boston

    Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978

    Article  PubMed  Google Scholar 

  • Popper AN, Fay RR (1999) the auditory periphery in fishes. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Handbook of Auditory Research. Springer-Verlag, New York, pp 43–100

    Chapter  Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer-Verlag, New York, pp 459–480

    Google Scholar 

  • Song J, Yan HY, Popper AN (1995) Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63–71

    Article  PubMed  CAS  Google Scholar 

  • Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 157:837–843

    Article  PubMed  CAS  Google Scholar 

  • Vogel D, Bleckmann H (1997) Surface wave discrimination in the topminnow Aplocheilus lineatus. J Comp Physiol A 180:671–681

    Article  Google Scholar 

  • Vogel D, Bleckmann H (2001) Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186:1107–1117

    Article  CAS  Google Scholar 

  • Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer-Verlag, New York, pp 79–98

    Chapter  Google Scholar 

  • Webb JF, Montgomery JC, Mogdans J (2008) Bioacoustics and the lateral line system of fishes. In: Webb JF, Popper AN, Fay RR (eds) Fish bioacoustics. Springer handbook of auditory research. Springer, New York, pp 145–182

    Google Scholar 

  • Weisleder P, Rubel EW (1993) Hair cell regeneration after streptomycin toxicity in the avian vestibular epithelium. J Comp Neurol 331:97–110

    Article  PubMed  CAS  Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cavefish Anoptichthys jordani. J Comp Physiol A 143:375–382

    Article  Google Scholar 

  • Wersäll J, Flock A (1964) Suppression and restoration of the microphonic output from the lateral line organ after local application of streptomycin. Life Sci 3:1151–1155

    Article  Google Scholar 

  • Yan HY, Popper AN (1992) Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier). J Comp Physiol A 171:105–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the DFG (Mo 718, 3-2) and by the European Commission, Future and Emerging Technologies, under project CILIA (project number 016039). Experiments were performed under the guidelines established by current German animal protection law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Mogdans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogdans, J., Nauroth, I.E. The oscar, Astronotus ocellatus, detects and discriminates dipole stimuli with the lateral line system. J Comp Physiol A 197, 959–968 (2011). https://doi.org/10.1007/s00359-011-0656-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0656-3

Keywords

Navigation