Skip to main content
Log in

Responses of brainstem lateral line units to different stimulus source locations and vibration directions

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We recorded responses of lateral line units in the medial octavolateralis nucleus in the brainstem of goldfish, Carassius auratus, to a 50 Hz vibrating sphere and studied how responses were affected by placing the sphere at various locations alongside the fish and by different directions of vibration. In most units (88%), stimulation with the sphere from one or more spatial locations caused an increase and/or decrease in discharge rate. In few units (10%), discharge rate was increased by stimulation from one location and decreased by stimulation from an adjacent location in space. In a minority of the units (2%), changing sphere location did not affect discharge rates but caused a change in phase coupling. Units sensitive to a distinct sphere vibration direction were not found. The data also show that the responses of most brainstem units differ from those of primary afferent nerve fibers. Whereas primary afferents represent the pressure gradient pattern generated by the sphere and thus encode location and vibration direction of a vibrating sphere, most brainstem units do not. This information may be represented in the brainstem by a population code or in higher centers of the ascending lateral line pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebrafish. Proc Natl Acad Sci USA 96:7558–7562

    Article  PubMed  CAS  Google Scholar 

  • Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the Axolotl, Ambystoma mexicanum. J Comp Physiol A 167:347–356

    Article  Google Scholar 

  • Batschelet E (1981) The Rayleigh test, circular statistics in biology. Academic press, New York, pp 54–58

  • Blaxter JHS, Fuiman LA (1990) The role of the sensory systems of herring larvae in evading predatory fishes. J Mar Biol Assoc UK 70:413–427

    Article  Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164:459–474

    Article  PubMed  CAS  Google Scholar 

  • Caird DM (1978) A simple cerebellar system: the lateral line lobe of goldfish. J Comp Physiol A 127:61–74

    Article  Google Scholar 

  • Campenhausen CV, Riess I, Weissert R (1981) Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374

    Article  Google Scholar 

  • Chagnaud BP, Brucker C, Hofmann MH, Bleckmann H (2008) Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. J Neurosci 28:4479–4487

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin. I. Approach strategies. J Comp Physiol A 180:387–399

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195:279–297

    Article  Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:609–626

    Article  Google Scholar 

  • Ćurčić-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209:1548–1559

    Article  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Goulet J, Engelmann J, Chagnaud BP, Franosch JMP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17

    Article  Google Scholar 

  • Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44:107–112

    Article  PubMed  CAS  Google Scholar 

  • Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdi). J Exp Biol 206:59–70

    Article  PubMed  Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in midbrain of catfishes. J Comp Neurol 173:417–431

    Article  PubMed  CAS  Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity-sensitive and acceleration-sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221

    PubMed  CAS  Google Scholar 

  • Kröther S (2002) Influence of running water on the responses of brainstem lateral line units of the goldfish, Carassius auratus, and the rainbow trout, Oncorhynchus mykiss. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn

  • Kröther S, Mogdans J, Bleckmann H (2001) Projection patterns of head and trunk lateral line nerve branchlets in the goldfish, Carassius auratus. Abstracts in 6th International Congress of Neuroethology, Bonn, Germany

  • Kröther S, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. J Exp Biol 205:1471–1484

    PubMed  Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181

    Article  Google Scholar 

  • Mogdans J, Bleckmann H (1999) Peripheral lateral line responses to amplitude-modulated sinusoidal wave stimuli. J Comp Physiol A 185:173–180

    Article  Google Scholar 

  • Mogdans J, Goenechea L (2000) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102:227–237

    Google Scholar 

  • Mogdans J, Kröther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104:153–166

    Article  PubMed  CAS  Google Scholar 

  • Montgomery J, Coombs S, Halstead M (1995) Biology of the mechanosensory lateral-line in fishes. Rev Fish Biol Fish 5:399–416

    Article  Google Scholar 

  • Montgomery J, Bodznick D, Halstead M (1996) Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus. J Exp Biol 199:893–899

    PubMed  Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Münz H (1985) Single unit-activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Article  Google Scholar 

  • New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 366:534–546

    Article  PubMed  CAS  Google Scholar 

  • New JG, Fewkes LA, Khan AN (2001) Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems. J Exp Biol 204:1207–1221

    PubMed  CAS  Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 17–78

    Google Scholar 

  • Northcutt RG, Wullimann MF (1988) The visual system in teleost fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 515–552

    Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol A 135:315–325

    Article  Google Scholar 

  • Plachta DTT, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus. J Exp Biol 206:3479–3486

    Article  PubMed  Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Warland D, Steveninck RdRv, Bialek W (1997) Spikes: exploring the neural code. MIT, Cambridge

    Google Scholar 

  • Satou M, Takeuchi H-A, Nishii J, Tanabe M, Kitamura S, Okumoto N, Iwata M (1994) Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 174:539–549

    Google Scholar 

  • Schellart NAM, Kamermans M, Nederstigt LJA (1987) An electrophysiological study of the topographical organization of the multisensory torus semicircularis of the rainbow-trout. Comp Biochem Physiol A 88:461–469

    Article  Google Scholar 

  • Simmons AM, Costa LM, Gerstein HB (2004) Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis). J Comp Physiol A 190:747–758

    Article  Google Scholar 

  • Udin SB, Fawcett JW (1988) Formation of topographic maps. Ann Rev Neurosci 11:289–327

    Article  PubMed  CAS  Google Scholar 

  • Weisstein EW (1998) The CRC concise encyclopedia of mathematics. CRC Press,  

    Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral-line and auditory units in the medulla oblongata of the Rainbow-Trout (Oncorhynchus mykiss). J Exp Biol 179:77–92

    Google Scholar 

  • Zittlau KE, Claas B, Munz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Björn Scholze for generously providing us with the data shown in Fig. 1. We also wish to thank J. Engelmann for helpful comments on the manuscript. Experiments were performed under the guidelines established by current German animal protection law (permission no. 50.203.2-BN 7, 14/05). This research was supported by the European Commission under project CILIA (project number 016039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Künzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künzel, S., Bleckmann, H. & Mogdans, J. Responses of brainstem lateral line units to different stimulus source locations and vibration directions. J Comp Physiol A 197, 773–787 (2011). https://doi.org/10.1007/s00359-011-0642-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0642-9

Keywords

Navigation