Skip to main content
Log in

Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Neural responses to tones in the mammalian primary auditory cortex (A1) exhibit adaptation over the course of several seconds. Important questions remain about the taxonomic distribution of multi-second adaptation and its possible roles in hearing. It has been hypothesized that neural adaptation could explain the gradual “build-up” of auditory stream segregation. We investigated the influence of several stimulus-related factors on neural adaptation in the avian homologue of mammalian A1 (field L2) in starlings (Sturnus vulgaris). We presented awake birds with sequences of repeated triplets of two interleaved tones (ABA–ABA–…) in which we varied the frequency separation between the A and B tones (ΔF), the stimulus onset asynchrony (time from tone onset to onset within a triplet), and tone duration. We found that stimulus onset asynchrony generally had larger effects on adaptation compared with ΔF and tone duration over the parameter range tested. Using a simple model, we show how time-dependent changes in neural responses can be transformed into neurometric functions that make testable predictions about the dependence of the build-up of stream segregation on various spectral and temporal stimulus properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A1:

Mammalian primary auditory cortex

CF:

Characteristic frequency

ΔF :

Frequency separation

SOA:

Stimulus onset asynchrony

SSA:

Stimulus-specific adaptation

TD:

Tone duration

References

  • Abbas PJ (1984) Recovering from long-term and short-term adaptation of the whole nerve action potential. J Acoust Soc Am 75:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Anderson LA, Christianson GB, Linden JF (2009) Stimulus-pecific adaptation cccurs in the auditory thalamus. J Neurosci 29:7359–7363

    Article  CAS  PubMed  Google Scholar 

  • Anstis S, Saida S (1985) Adaptation to auditory streaming of frequency-modulated tones. J Exp Psychol Hum Percept Perform 11:257–271

    Article  Google Scholar 

  • Asari H, Zador AM (2009) Long-lasting context dependence constrains neural encoding models in rodent auditory cortex. J Neurophysiol 102:2638–2656

    Article  PubMed  Google Scholar 

  • Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. Neuron 36:909–919

    Article  CAS  PubMed  Google Scholar 

  • Beauvois MW (1998) The effect of tone duration on auditory stream formation. Percept Psychophys 60:852–861

    CAS  PubMed  Google Scholar 

  • Bee MA, Klump GM (2004) Primitive auditory stream segregation: a neurophysiological study in the songbird forebrain. J Neurophysiol 92:1088–1104

    Article  PubMed  Google Scholar 

  • Bee MA, Klump GM (2005) Auditory stream segregation in the songbird forebrain: effects of time intervals on responses to interleaved tone sequences. Brain Behav Evol 66:197–214

    Article  PubMed  Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251

    Article  PubMed  Google Scholar 

  • Boettcher FA, Salvi RJ, Saunders SS (1990) Recovery from short-term adaptation in single neurons in the cochlear nucleus. Hear Res 48:125–144

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS (1978) Auditory streaming is cumulative. J Exp Psychol Hum Percept Perform 4:380–387

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Bregman AS, Ahad PA, Crum PAC, O'Reilly J (2000) Effects of time intervals and tone durations on auditory stream segregation. Percept Psychophys 62:626–636

    Google Scholar 

  • Brenner N, Bialek W, van Steveninck RD (2000) Adaptive rescaling maximizes information transmission. Neuron 26:695–702

    Article  CAS  PubMed  Google Scholar 

  • Brokx JPL, Nooteboom SG (1982) Intonation and the perceptual separation of simultaneous voices. J Phon 10:23–36

    Google Scholar 

  • Carandini M, Ferster D (1997) A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276:949–952

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP (2004) How the brain separates sounds. Trends Cogn Sci 8:465–471

    Article  PubMed  Google Scholar 

  • Carlyon RP, Cusack R, Foxton JM, Robertson IH (2001) Effects of attention and unilateral neglect on auditory stream segregation. J Exp Psychol Hum Percept Perform 27:115–127

    Article  CAS  PubMed  Google Scholar 

  • Chimento TC, Schreiner CE (1990) Time course of adaptation and recovery from adaptation in the cat auditory-nerve neurophonic. J Acoust Soc Am 88:857–864

    Article  CAS  PubMed  Google Scholar 

  • Chimento TC, Schreiner CE (1991) Adaptation and recovery from adaptation in single fiber responses of the cat auditory nerve. J Acoust Soc Am 90:263–273

    Article  CAS  PubMed  Google Scholar 

  • Cusack R, Deeks J, Aikman G, Carlyon RP (2004) Effects of location, frequency region, and time course of selective attention on auditory scene analysis. J Exp Psychol Hum Percept Perform 30:643–656

    Article  PubMed  Google Scholar 

  • Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684–1689

    Article  CAS  PubMed  Google Scholar 

  • Deike S, Gaschler-Markefski B, Brechmann A, Scheich H (2004) Auditory stream segregation relying on timbre involves left auditory cortex. Neuroreport 15:1511–1514

    Google Scholar 

  • Deike S, Scheich H, Brechmann A (2010) Active stream segregation specifically involves the left human auditory cortex. Hear Res 265:30–37

    Google Scholar 

  • Dooling RJ, Okanoya K, Downing J, Hulse S (1986) Hearing in the starling (Sturnus vulgaris): absolute thresholds and critical ratios. Bull Psychon Soc 24:462–464

    Google Scholar 

  • Eens M, Pinxten R, Verheyen RF (1989) Temporal and sequential organization of song bouts in the starling. Ardea 77:75–86

    Google Scholar 

  • Eens M, Pinxten R, Verheyen RF (1991) Organization of song in the European starling: species-specificity and individual differences. Belg J Zool 121:257–278

    Google Scholar 

  • Eggermont JJ, Spoor A (1973a) Cochlear adaptation in guinea pigs: a quantitative description. Audiology 12:193–220

    CAS  PubMed  Google Scholar 

  • Eggermont JJ, Spoor A (1973b) Masking of action potentials in the guinea pig cochlea and its relation to adaptation. Audiology 12:221–241

    CAS  PubMed  Google Scholar 

  • Elhilali M, Ma L, Micheyl C, Oxenham AJ, Shamma SA (2009) Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron 61:317–329

    Article  CAS  PubMed  Google Scholar 

  • Fairhall AL, Lewen GD, Bialek W, van Steveninck RRD (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412:787–792

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1998) Auditory stream segregation in goldfish (Carassius auratus). Hear Res 120:69–76

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (2000) Spectral contrasts underlying auditory stream segregation in goldfish (Carassius auratus). Jaro 1:120–128

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (2008) Sound source perception and stream segregation in nonhuman vetebrate animals. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 307–323

    Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, Steinschneider M (2001) Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res 151:167–187

    Article  CAS  PubMed  Google Scholar 

  • Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116:1656–1670

    Article  PubMed  Google Scholar 

  • Gentner TQ (2008) Temporal scales of auditory objects underlying birdsong vocal recognition. J Acoust Soc Am 124:1350–1359

    Article  PubMed  Google Scholar 

  • Gentner TQ, Hulse SH (1998) Perceptual mechanisms for individual vocal recognition in European starlings, Sturnus vulgaris. Anim Behav 56:579–594

    Article  PubMed  Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388

    Google Scholar 

  • Gutschalk A, Oxenham AJ, Micheyl C, Wilson C, Melcher JR (2007) Human cortical activity during streaming without spectral cues suggests a general neural substrate for auditory stream segregation. J Neurosci 27:13074–13081

    Article  CAS  PubMed  Google Scholar 

  • Harris DM, Dallos P (1979) Forward masking of auditory-nerve fiber responses. J Neurophysiol 42:1083–1107

    CAS  PubMed  Google Scholar 

  • Hartmann WM, Johnson D (1991) Stream segregation and peripheral channeling. Music Percept 9:155–184

    Google Scholar 

  • Huang CM (1981) Time constants of acoustic adaptation. Electroencephalogr Clin Neurophysiol 52:394–399

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Buchwald JS (1980) Changes of acoustic nerve and cochlear nucleus evoked-potentials due to repetitive stimulation. Electroencephalogr Clin Neurophysiol 49:15–22

    Article  CAS  PubMed  Google Scholar 

  • Hulse SH (2002) Auditory scene analysis in animal communication. Adv Study Behav 31:163–200

    Article  Google Scholar 

  • Hulse SH, MacDougall-Shackleton SA, Wisniewski AB (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J Comp Psychol 111:3–13

    Article  CAS  PubMed  Google Scholar 

  • Itatani N, Klump GM (2009) Auditory streaming of amplitude-modulated sounds in the songbird forebrain. J Neurophysiol 101:3212–3225

    Article  PubMed  Google Scholar 

  • Izumi A (2001) Auditory sequence discrimination in Japanese monkeys: effect of frequency proximity on perceiving auditory stream. Psychologia 44:17–23

    Google Scholar 

  • Izumi A (2002) Auditory stream segregation in Japanese monkeys. Cognition 82:B113–B122

    Article  PubMed  Google Scholar 

  • Jaaskelainen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levanen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101:6809–6814

    Article  PubMed  Google Scholar 

  • Jarvis E, Gunturkun O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159

    Article  CAS  PubMed  Google Scholar 

  • Javel E (1996) Long-term adaptation in cat auditory-nerve fiber responses. J Acoust Soc Am 99:1040–1052

    Article  CAS  PubMed  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark EF (1965) Discharge patterns of single fibers in the cat auditory nerve. MIT Press, Cambridge

    Google Scholar 

  • Klump GM, Langemann U, Gleich O (2000) The European starling as a model for undestanding perceptual mechanisms. In: Manley GA, Fastl H, Kössl M, Oeckinghaus H, Klump GM (eds) Auditory worlds: sensory analysis and perception in animals and man. Wiley-VCH, Weinheim

    Google Scholar 

  • Kondo HM, Kashino M (2009) Involvement of the thalamocortical loop in the spontaneous switching of percepts in auditory streaming. J Neurosci 29:12695–12701

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Micheyl C, Yin P, Oxenham AJ, Shamma SA (2010) Behavioral measures of auditory streaming in ferrets. J Comp Psychol (in press)

  • MacDougall-Shackleton SA, Hulse SH, Gentner TQ, White W (1998) Auditory scene analysis by European starlings (Sturnus vulgaris): perceptual segregation of tone sequences. J Acoust Soc Am 103:3581–3587

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    Article  CAS  PubMed  Google Scholar 

  • Megela AL, Capranica RR (1983) A Neural and behavioral study of auditory habituation in the bullfrog, Rana catesbeiana. J Comp Physiol 151:423–434

    Article  Google Scholar 

  • Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake Macaques. Neuron 48:139–148

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Courtenay Wilson E (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229:116–131

    Article  PubMed  Google Scholar 

  • Møller AR (1976) Dynamic properties of primary auditory fibers compared with cells in cochlear nucleus. Acta Physiol Scand 98:157–167

    Article  PubMed  Google Scholar 

  • Moore BCJ, Gockel H (2002) Factors influencing sequential stream segregation. Acta Acust United Acust 88:320–333

    Google Scholar 

  • Müller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285:1405–1408

    Article  PubMed  Google Scholar 

  • Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223

    Article  Google Scholar 

  • Nieder A, Klump GM (1999) Adjustable frequency selectivity of auditory forebrain neurons recorded in a freely moving songbird via radiotelemetry. Hear Res 127:41–54

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gonzalez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885

    Article  PubMed  Google Scholar 

  • Pressnitzer D, Sayles M, Micheyl C, Winter IM (2008) Perceptual organization of sound begins in the auditory periphery. Curr Biol 18:1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Schadwinkel S, Gutschalk A (2010) Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cereb Cortex [Epub ahead of print]

  • Shamma SA, Micheyl C (2010) Behind the scenes of auditory perception. Curr Opin Neurobiol 20:361–366

    Article  CAS  PubMed  Google Scholar 

  • Smith RL (1977) Short-term adaptation in single auditory-nerve fibers: some post-stimulatory effects. J Neurophysiol 40:1098–1112

    CAS  PubMed  Google Scholar 

  • Smith RL (1979) Adaptation, saturation, and physiological masking in single auditory-nerve fibers. J Acoust Soc Am 65:166–178

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern 17:169–182

    Article  CAS  PubMed  Google Scholar 

  • Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799

    Article  PubMed  Google Scholar 

  • Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. J Cogn Neurosci 18:1–13

    Article  PubMed  Google Scholar 

  • Snyder JS, Holder WT, Weintraub DM, Carter OL, Alain C (2009) Effects of prior stimulus and prior perception on neural correlates of auditory stream segregation. Psychophysiology 46:1208–1215

    Article  PubMed  Google Scholar 

  • StatSoft (2006) STATISTICA (data analysis software system), version 7.1. http://www.statsoft.com

  • Sussman E, Ritter W, Vaughan HG (1999) An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology 36:22–34

    Article  CAS  PubMed  Google Scholar 

  • Sussman ES, Horvath J, Winkler I, Orr M (2007) The role of attention in the formation of auditory streams. Percept Psychophys 69:136–152

    PubMed  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453

    Article  CAS  PubMed  Google Scholar 

  • van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. Eindhoven University of Technology

  • von der Behrens W, Bauerle P, Kossl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29:13837–13849

    Article  Google Scholar 

  • Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445

    Article  CAS  PubMed  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory-nerve responses. Hear Res 15:249–260

    Article  CAS  PubMed  Google Scholar 

  • Wilson EC, Melcher JR, Micheyl C, Gutschalk A, Oxenham AJ (2007) Cortical fMRI activation to sequences of tones alternating in frequency: relationship to perceived rate and streaming. J Neurophysiol 97:2230–2238

    Article  PubMed  Google Scholar 

  • Winkler I, Takegata R, Sussman E (2005) Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Cogn Brain Res 25:291–299

    Article  Google Scholar 

  • Wisniewski AB, Hulse SH (1997) Auditory scene analysis in European starlings (Sturnus vulgaris): discrimination of song segments, their segregation from multiple and reversed conspecific songs, and evidence for conspecific song categorization. J Comp Psychol 111:337–350

    Article  Google Scholar 

  • Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The care and treatment of the animals were in accordance with the procedures of animal experimentation approved by the Bezirksregierung Weser-Ems. This work was supported by National Science Foundation grant INT-0107304, by National Institute on Deafness and Other Communication Disorders (NIDCD) grant R01 DC 009582, and a fellowship from the McKnight Foundation to MAB, NIDCD grant R01 DC 07657 to Shihab A. Shamma, CM and AJO, and by Deutsche Forschungsgemeinschaft SFB/TRR31 to GMK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bee.

Additional information

M. A. Bee and C. Micheyl contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bee, M.A., Micheyl, C., Oxenham, A.J. et al. Neural adaptation to tone sequences in the songbird forebrain: patterns, determinants, and relation to the build-up of auditory streaming. J Comp Physiol A 196, 543–557 (2010). https://doi.org/10.1007/s00359-010-0542-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0542-4

Keywords

Navigation