Skip to main content
Log in

Structures that contribute to middle-ear admittance in chinchilla

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We describe measurements of middle-ear input admittance in chinchillas (Chinchilla lanigera) before and after various manipulations that define the contributions of different middle-ear components to function. The chinchilla’s middle-ear air spaces have a large effect on the low-frequency compliance of the middle ear, and removing the influences of these spaces reveals a highly admittant tympanic membrane and ossicular chain. Measurements of the admittance of the air spaces reveal that the high-degree of segmentation of these spaces has only a small effect on the admittance. Draining the cochlea further increases the middle-ear admittance at low frequencies and removes a low-frequency (less than 300 Hz) level dependence in the admittance. Spontaneous or sound-driven contractions of the middle-ear muscles in deeply anesthetized animals were associated with significant changes in middle-ear admittance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The measurements of middle-ear input admittance reported in this thesis are contaminated by a calculation error that was corrected when they were illustrated in Rosowski (1994).

  2. The equivalent volume and the acoustic compliance are related by EqVol = βA C, where C is an acoustic compliance with units of m3/pascal and βA is the adiabatic bulk modulus of an ideal gas. At standard temperature and pressure βA = 1.4 × 105 pascal.

  3. The existence of admittance angle estimates more negative than  − 0.25 periods is more likely than not related to uncertainties in the estimate of the real part of the admittance rather than the existence of sound sources within the ear.

Abbreviations

βA :

the adiabatic bulk modulus of air which equals 1.4 × 105 Pa at standard temperature and pressure

ρ0 :

the density of air, at standard temperature and pressure = 1.2 kg m−3

a :

the effective radius of the bullar hole

A TM :

the area of the TM

C :

an acoustic compliance with units of m3 Pa−1

C MEair :

the acoustic compliance of the middle-ear air spaces

C HTM :

the acoustic compliance measured lateral to the TM with 1 or 2 holes in the bullar walls

C ITM :

the acoustic compliance lateral to the TM with the middle-ear air spaces intact or bullar-holes sealed

C PTM :

the acoustic compliance lateral to the TM with bullar-holes sealed and the TM perforated

C TOC :

the acoustic compliance of the TM, ossicles and cochlea measured lateral to the TM

C TO :

the acoustic compliance of the TM and ossicles measured lateral to the TM

EqVol:

the equivalent air volume that describes the magnitude of an acoustic compliance

f :

frequency

ISJ:

the incudo-stapedial joint

l :

the thickness of the bony bullar wall

M A :

the acoustic mass associated with the open bullar hole with units of kg m−4

m TO :

the effective mechanical mass of the TM and attached ossicles

M TO :

the acoustic mass of the TM and ossicles measured lateral to the TM

Pa:

a pascal, the SI unit of pressure quivalent to 1 N m−2

S:

an acoustic siemen, a measure of acoustic admittance equivalent to 1 m3 s−1 Pa−1

SPL:

sound pressure level, a dB measure of sound level where X dB SPL = 20 log10(Y rms Pa /2 × 10−5 Pa)

TM:

the tympanic membrane or ear-drum membrane

Y :

an acoustic admittance with units of siemens

Y ASBH :

the acoustic admittance of the middle-ear air spaces with an open bullar hole

Y EC :

the acoustic admittance measured at the entrance of the ear canal coupler

Y TM :

the acoustic admittance within the ear canal just lateral to the TM

Y CDTM :

the acoustic admittance lateral to the TM with the cochlea drained of fluid

Y HTM :

the acoustic admittance lateral to the TM with 1 or 2 holes in the bullar walls

Y ITM :

the acoustic admittance lateral to the TM with the middle-ear air spaces intact or bullar-holes sealed

Y OITM :

the acoustic admittance lateral to the TM with an interrupted ISJ

Y PTM :

the acoustic admittance lateral to the TM with bullar-holes sealed and the TM perforated

Y MEair :

the admittance of the middle-ear air space

Y TOC :

the admittance at the tympanic membrane produced by the TM, ossicles (and their ligaments) and the cochlea when the admittance of the middle-ear air spaces is made infinite (Huang et al. 1997)

References

  • Allen JB (1986) Measurements of eardrum acoustic impedance. In: Allen JB, Hall JH, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer, Berlin Heidelberg New York, pp 44–51

    Google Scholar 

  • Avan P, Büki B, Maat B, Dordain M, Wit HP (2000) Middle ear influence on otoacoustic emissions. I: noninvasive investigation of the human transmission apparatus and comparison with model results. Hear Res 140:189–201

    Article  PubMed  CAS  Google Scholar 

  • Beranek LL (1986) Acoustics. American Institute of Physics, New York

    Google Scholar 

  • Bismarck G Von, Pfeiffer RR (1967) On the sound pressure transformation from free field to eardrum of chinchilla. J Acoust Soc Am 42:S156

    Article  Google Scholar 

  • Borg E (1972) On the change in the acoustic impedance of the ear as a measure of middle ear muscle reflex activity. Acta Otolaryngol 74:163–171

    PubMed  CAS  Google Scholar 

  • Browning GG, Granich MS (1978) Surgical anatomy of the temporal bone in the chinchilla. Ann Otol Rhinol Laryngol 87:875–882

    PubMed  CAS  Google Scholar 

  • Dallos P (1970) Low frequency auditory characteristics: species dependence. J Acoust Soc Am 48:489–499

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (1973) The auditory periphery. Academic, New York

    Google Scholar 

  • Dear SP (1987) Impedance and sound transmission in the auditory periphery of the chinchilla. PhD Thesis, University of Pennsylvania

  • Drescher DG, Eldredge DH (1974) Species differences in cochlear fatigue related to acoustics of outer and middle ears of guinea pig and chinchilla. J Acoust Soc Am 56:929–934

    Article  PubMed  CAS  Google Scholar 

  • Ehret G, Frankenreiter M (1977). Quantitative analysis of cochlear structures in the house mouse in relation to mechanisms of acoustical information processing. J Comp Physiol A 122:65–85

    Article  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: a Psychophysics Databook. Hill-Fay Associates, Winnetka, Illinois

    Google Scholar 

  • Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55:3–69

    PubMed  CAS  Google Scholar 

  • Guinan JJ Jr, Peake WT (1967) Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 41:1237–1261

    Article  PubMed  Google Scholar 

  • Heim de Balsac H (1936) Biogéographie des mammifères et des oiseaux de l’Afrique du Nord. Bulletin Biologique de France et de Belgique Suppl. XXI:450

    Google Scholar 

  • Henderson D (1969) Temporal summation of acoustic signals by the chinchilla. J Acoust Soc Am 46(2):474–475

    Article  PubMed  CAS  Google Scholar 

  • Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology: the auditory system. Springer, Berlin Heidelberg New York, pp 39–110

    Google Scholar 

  • Huang GT, Rosowski JJ, Flandermeyer DT, Lynch TJ III, Peake WT (1997) The middle ear of a lion: comparison of structure and function to domestic cat. J Acoust Soc Am 101:1532–1549

    Article  PubMed  CAS  Google Scholar 

  • Huang GT, Rosowski JJ, Peake WT (2000). Relating middle-ear acoustic performance to body size in the cat family: measurements and models. J Comp Physiol A 186:447–465

    Article  PubMed  CAS  Google Scholar 

  • Huang GT, Rosowski JJ, Peake WT (2002) Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita). J Comp Physiol A 188:663–681

    Article  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1978) Physical and physiological principles controlling auditory sensitivity in primates. In: Noback R (ed) Neurobiology of primates. Plenum Press, New York, pp 23–52

    Google Scholar 

  • Kim DO, Siegel JH, Molnar CE (1980) Postmortem effects and species difference for acoustic input characteristics at the eardrum of the chinchilla and the cat. Soc Neurosci Abstracts 6:41

    Google Scholar 

  • Lay DM (1972) The anatomy, physiology, functional significance and evolution of specialized hearing organs of Gerbilline rodents. J Morphol 138:41–120

    Article  PubMed  CAS  Google Scholar 

  • Lay DA (1974) Differential predation on gerbils (Meriones) by the little owl, Athene brahma. J Mammalogy 55:608–614

    Article  Google Scholar 

  • Legouix JP, Wisner A (1955) Role fonctionnel des bulles tympaniques géantes de certains rongeurs (Meriones). Acoustica 5:208–216

    Google Scholar 

  • Lupien PJ, McCay CM (1960) Thermic contraction and elasticity in the chinchilla tendon fiber as influenced by age. Gerontologia 4:90–103

    Article  PubMed  CAS  Google Scholar 

  • Lutman ME, Martin AM (1979) Development of an electroacoustic analogue model of the middle ear and acoustic reflex. J Sound Vib 64:133–157

    Article  Google Scholar 

  • Lynch TJ III (1981) Signal processing by the cat middle ear: Admittance and transmission, measurements and models. ScD Thesis, Massachusetts Institute of Technology

  • Lynch TJ III, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72:108–130

    Article  PubMed  Google Scholar 

  • Lynch TJ III, Peake WT, Rosowski JJ (1994) Measurements of the acoustic input-impedance of cat ears: 10 Hz to 20 kHz. J Acoust Soc Am 96:2184–2209

    Article  PubMed  Google Scholar 

  • Møller AR (1965) Experimental study of the acoustic impedance of the middle ear and its transmission properties. Acta Otolaryngol 60:129–149

    PubMed  Google Scholar 

  • Møller AR (1974) The acoustic middle-ear muscle reflex. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology: auditory system. Springer, Berlin Heidelberg New York, pp 519–548

    Google Scholar 

  • Møller AR (1983) Auditory physiology. Academic Press, New York

    Google Scholar 

  • Miller JD (1970) Audibility curve of the chinchilla. J Acoust Soc Am 48:513–523

    Article  PubMed  CAS  Google Scholar 

  • Nummela S (1995) Scaling of the mammalian middle ear. Hear Res 85:18–30

    Article  PubMed  CAS  Google Scholar 

  • Nuttall A (1974) Tympanic muscle effects on middle-ear transfer characteristics. J Acoust Soc Am 56:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Olson ES (1998) Observing middle and inner ear mechanics with novel intracochlear pressure sensors. J Acoust Soc Am 103:3445–3463

    Article  PubMed  CAS  Google Scholar 

  • Onchi Y (1961) Mechanism of the middle ear. J Acoust Soc Am 33:794–805

    Article  Google Scholar 

  • Peake WT, Rosowski JJ, Lynch TJ III (1992) Middle-ear transmission: Acoustic vs. ossicular coupling in cat and human. Hear Res 57:245–268

    Article  PubMed  CAS  Google Scholar 

  • Peters EN (1965) Temporary shifts in auditory thresholds of chinchilla after exposure to noise. J Acoust Soc Am 37:831–833

    Article  PubMed  CAS  Google Scholar 

  • Price DA (1953) Intramedullary fixation of femoral fracture in a chinchilla. J Am Vet Med Assoc 123:400–401

    PubMed  CAS  Google Scholar 

  • Puria S, Allen JB (1998) Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J Acoust Soc Am 104:3463–3481

    Article  PubMed  CAS  Google Scholar 

  • Puria S, Peake WT, Rosowski JJ (1997) Sound-pressure measurements in the cochlear vestibule of human cadavers. J Acoust Soc Am 101: 2745–2770

    Article  Google Scholar 

  • Rabinowitz WM (1981) Measurement of the acoustic input immittance of the human ear. J Acoust Soc Am 70:1025–1035

    Article  PubMed  CAS  Google Scholar 

  • Ravicz ME, Rosowski JJ (1997) Sound power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: III. Effect of variations in middle-ear volume. J Acoust Soc Am 101:2135–2147

    Article  PubMed  CAS  Google Scholar 

  • Ravicz ME, Rosowski JJ, Voigt HF (1992) Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: I. Middle-ear input impedance. J Acoust Soc Am 92:157–177

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ (1991a) The effects of external-and middle-ear filtering on auditory threshold and noise-induced hearing loss. J Acoust Soc Am 90:124–135

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ (1991b) Erratum: “The effects of external- and middle-ear filtering on auditory threshold and noise- induced hearing loss. [J Acoust Soc Am 1991; 90:124–135].” J Acoust Soc Am 90:3373

  • Rosowski JJ (1992). Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In: Webster DB, Popper AN, Fay RR (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 625–631

    Google Scholar 

  • Rosowski JJ (1994) Outer and middle ear. In: Popper AN, Fay RR (eds) Springer handbook of auditory research: comparative hearing: mammals. Springer, Berlin Heidelberg New York, pp 172–247

    Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linnean Soc 101:131–168

    Google Scholar 

  • Rosowski JJ, Peake WT, Lynch TJ III (1984) Acoustic input-admittance of the alligator-lizard ear: nonlinear features. Hear Res 16:205–223

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ, Peake WT, Lynch TJ III, Leong R, Weiss TF (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia, II. Macromechanical stage. Hear Res 20:139–155

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ, Carney LH, Lynch TJ III, Peake WT (1986) The effectiveness of external and middle ears in coupling acoustic power into the cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer, Berlin Heidelberg New York, pp 3–12

    Google Scholar 

  • Rosowski JJ, Brinsko KM, Tempel BL, Kujawa SG (2003) The ageing of the middle ear in 129S6/SvEvTac and CBA/CaJ mice: Measurements of umbo velocity, hearing function and the incidence of pathology. JARO 4:371–383

    PubMed  Google Scholar 

  • Ruggero MA, Temchin AN (2002) The roles of the external, middle and inner ears in determining the bandwidth of hearing. PNAS 99:13206–13210

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Shivapuja BG (1990) Middle ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J Acoust Soc Am 87:1612–1629

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Shivapuja BG, Temchin AN (1996) Auditory-nerve responses to low-frequency tones: Intensity dependence. Audit Neurosci 2:159–185

    Google Scholar 

  • Saunders JC, Summers RM (1982) Auditory structure and function in the mouse middle ear: An evaluation by SEM and capacitive probe. J Comp Physiol A 146:517–525

    Article  Google Scholar 

  • Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62

    Article  PubMed  Google Scholar 

  • Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871

    Article  PubMed  Google Scholar 

  • Strike TA, Seigneur LJ (1969) Acute mortality of chinchillas exposed to mixed gamma-neutron radiations or 250-kVp x-rays. Radiat Res 38:414–424

    Article  PubMed  CAS  Google Scholar 

  • Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569

    Article  PubMed  Google Scholar 

  • Teas DC, Nielsen DW (1975) Interaural attenuation versus frequency for guinea pig and chinchilla CM response. J Acoust Soc Am 58:1066–1072

    Article  PubMed  CAS  Google Scholar 

  • Tibbitts FD, Hillemann HH (1959) The development and histology of the chinchilla placentae. J Morphol 105:317–365

    Article  PubMed  CAS  Google Scholar 

  • Trautwein G, Helmboldt CF (1967) Experimental pulmonary talcum granuloma and epithelial hyperplasia in the chinchilla. Pathol Vet 4:254–267

    PubMed  CAS  Google Scholar 

  • Voss SE, Rosowski JJ, Merchant SN, Peake WT (2001) Middle-ear function with tympanic membrane perforations. I. Measurements and mechanisms. J Acoust Soc Am 110:1432–1444

    Article  PubMed  CAS  Google Scholar 

  • Vrettakos PA, Dear SP, Saunders JC (1988) Middle-ear structure in the chinchilla: A quantitative study. Am J Otolaryngol 9:58–67

    PubMed  CAS  Google Scholar 

  • Webster DB (1961) The ear apparatus of the kangaroo rat, Dipodomys. Am J Anat 108:123–147

    Article  PubMed  CAS  Google Scholar 

  • Webster DB (1962) A function of the enlarged middle-ear cavities of the kangaroo rat, Dipodomys. Physiol Zool 35:248–255

    Google Scholar 

  • Webster DB, Plassmann W (1992) Parallel evolution of low-frequency sensitivity in old world and new world desert rodents. In: Webster DB, Popper AN, Fay RR (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 625–631

    Google Scholar 

  • Webster DB, Webster M (1975) Auditory systems of Heteromyidae: Functional morphology and evolution of the middle ear. J Morphol 146:343–376

    Article  PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1984) The specialized auditory system of kangaroo rats. Contributions to sensory physiology 8:161–196

    Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, Princeton

    Google Scholar 

  • Wiggers HC (1937) The functions of the intra-aural muscles. Am J Physiol 120:771–780

    Google Scholar 

  • Zwislocki J (1962) Analysis of the middle-ear function. Part I: input impedance. J Acoust Soc Am 34:1514–1523

    Article  Google Scholar 

  • Zwislocki J (1963) Analysis of the middle ear function. Part II: guinea-pig ear. J Acoust Soc Am 35:1034–1040

    Article  Google Scholar 

  • Zwislocki J (1975) The role of the external and middle ear in sound transmission. In: Tower DB (ed) The nervous system, vol 3: human communication and its Disorders. Raven Press, New York, pp 45–55

Download references

Acknowledgments

This work was supported by a grant from the National Institute of Deafness and other Communicative Disorders. The experiments comply with the “Principles of animal care”, publication No. 86–23, revised 1985 of the National Institute of Health, and also with the current laws of the United States of America and the Commonwealth of Massachusetts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Rosowski.

Appendix 1

Appendix 1

The acoustic mass of the bullar hole M A can be described in terms of the hole dimensions or the combination of the air-space compliance and the frequency of the anti-resonance:

$$M^{\rm A} = \frac{{\rho _{0} {\left({l + 1.6a} \right)}}}{{\pi\,a^{2}}} = \frac{1}{{C_{{\rm MEair}}\,{\left({2\pi\,f_{0}} \right)}^{2}}},$$
(4)

where ρ0 is the density of air, l is the thickness of the bony bullar wall (1 mm), a is the radius of the bullar hole, C MEair is the acoustic compliance of the middle-ear air spaces (the equivalent volume divided by the adiabatic compressibility of air)2, f 0 is the frequency of the anti-resonance and the factor of 1.6a represents the dual end-correction associated with flow through the bullar hole (e.g. Beranek 1986). We use the right-hand side of Eq. 4 to solve for M A using the data from our first set of 9 ears where f 0  = 1370 Hz (Table 1). Rearranging the left-hand side equality of Eq. 4 yields a quadratic relationship in a:

$$a^{2} - \frac{{1.6\,\rho _{o}}}{{\pi\,M^{\rm A}}}a - \frac{{\rho _{o} l}}{{\pi\,M^{\rm A}}} = 0$$
(5)

that when solved produces one positive root such that the calculated hole diameter (2a) is 2 mm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosowski, J.J., Ravicz, M.E. & Songer, J.E. Structures that contribute to middle-ear admittance in chinchilla. J Comp Physiol A 192, 1287–1311 (2006). https://doi.org/10.1007/s00359-006-0159-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0159-9

Keywords

Navigation