Skip to main content
Log in

The foraging gene, behavioral plasticity, and honeybee division of labor

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In recent years, the honeybee has emerged as an excellent model for molecular and genetic studies of complex social behaviors. By using the global gene expression methods as well as the candidate gene approach, it is now possible to link the function of genes to social behaviors. In this paper, I discuss the findings about one such gene, foraging, a cGMP-dependent protein kinase. The involvement of this gene in regulating division of labor is discussed on two independent, but not mutually exclusive levels; the possible mechanisms for PKG action in regulating behavioral transitions associated with honeybee division of labor, and its possible involvement in the evolution of division of labor in bees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Babiker FA, De Windt LJ, van Eickels M, Thijssen V, Bronsaer RJP, Grohe C, van Bilsen M, Doevendans PA (2004) 17{beta}-Estradiol antagonizes cardiomyocyte hypertrophy by autocrine/paracrine stimulation of a guanylyl cyclase a receptor-cyclic guanosine monophosphate-dependent protein kinase pathway. Circulation 109:269–276

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Leung HT, Pak WL, Sokolowski MB, Robinson GE (2003) cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J Exp Biol 206:2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Dudek NL, Robinson GE (2004) Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. J Exp Biol 207:3281–3288

    Article  PubMed  CAS  Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Robinson GE (2001) Chronobiology. Reversal of honeybee behavioural rhythms. Nature 410:1048

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Toma DP, Robinson GE (2001) Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J Biol Rhythms 16:444–456

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Rubinstein CD, Robinson GE (2004) Period expression in the honey bee brain is developmentally regulated and not affected by light, flight experience, or colony type. Insect Biochem Mol Biol 34:879–891

    Article  PubMed  CAS  Google Scholar 

  • Elekonich MM, Robinson GE (2000) Organizational and activational effects of hormones on insect behavior. J Insect Physiol 46:1509–1515

    Article  PubMed  CAS  Google Scholar 

  • Elphick MR, Kemenes G, Staras K, O’Shea M (1995) Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc. J Neurosci 15:7653–664

    PubMed  CAS  Google Scholar 

  • Engel JE, Xie XJ, Sokolowski MB, Wu CF (2000) A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophila. Learn Mem 7:341–352

    Article  PubMed  CAS  Google Scholar 

  • Etgen AM, Chu HP, Fiber JM, Karkanias GB, Morales JM (1999) Hormonal integration of neurochemical and sensory signals governing female reproductive behavior. Behav Brain Res 105:93–103

    Article  PubMed  CAS  Google Scholar 

  • Fahrbach SE, Robinson GE (1995) Behavioral development in the honey bee: toward the study of learning under natural conditions. Learn Mem 2:199–224

    Article  PubMed  CAS  Google Scholar 

  • Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380

    PubMed  CAS  Google Scholar 

  • Firestein BL, Bredt DS (1998) Regulation of sensory neuron precursor proliferation by cyclic GMP-dependent protein kinase. J Neurochem 71:1846–1853

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick MJ, Ben-Shahar Y, Smid HM, Vet LEM, Robinson GE, Sokolowski MB (2005) Candidate genes for behavioural ecology. Trends Ecol Evol 20:96–104

    Article  PubMed  Google Scholar 

  • Fry SN, Wehner R (2002) Honey bees store landmarks in an egocentric frame of reference. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 187:1009–1016

    Article  PubMed  Google Scholar 

  • Fujiwara M, Sengupta P, McIntire SL (2002) Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron 36:1091–1102

    Article  PubMed  CAS  Google Scholar 

  • Gillette MU, Tischkau SA (1999) Suprachiasmatic nucleus: the brain’s circadian clock (discussion 58–59). Recent Prog Horm Res 54:33–58

    PubMed  CAS  Google Scholar 

  • Golombek DA, Ferreyra GA, Agostino PV, Murad AD, Rubio MF, Pizzio GA, Katz ME, Marpegan L, Bekinschtein TA (2003) From light to genes: moving the hands of the circadian clock. Front Biosci 8:s285–93

    Article  PubMed  CAS  Google Scholar 

  • Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430:317–322

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W (1999) Modality-specific segregation of input to ant mushroom bodies. Brain Behav Evol 54:85–95

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 435:474–489

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE (2003) Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci USA 100(suppl 2):14519–14525

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC (2001) Phototransduction in Drosophila melanogaster. J Exp Biol 204:3403–3409

    PubMed  CAS  Google Scholar 

  • Heisenberg M (1998) What do the mushroom bodies do for the insect brain? an introduction. Learn Mem 5:1–10

    PubMed  CAS  Google Scholar 

  • Ingram KK, Oefner P, Gordon DM (2005) Task-specific expression of the foraging gene in harvester ants. Mol Ecol 14:813–818

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW, Tieman DG (2004) Nitric oxide and histamine induce neuronal excitability by blocking background currents in neuron MCC of Aplysia. J Neurophysiol 91:656–665

    Article  PubMed  CAS  Google Scholar 

  • Jassim O, Huang ZY, Robinson GE (2000) Juvenile hormone profiles of worker honey bees, Apis mellifera, during normal and accelerated behavioural development. J Insect Physiol 46:243–249

    Article  PubMed  CAS  Google Scholar 

  • Kimura K (2001) Transposable element-mediated transgenesis in insects beyond Drosophila. J Neurogenet 15:179–192

    Article  PubMed  CAS  Google Scholar 

  • Kroner C, Boekhoff I, Lohmann SM, Genieser HG, Breer H (1996) Regulation of olfactory signalling via cGMP-dependent protein kinase. Eur J Biochem 236:632–637

    Article  PubMed  CAS  Google Scholar 

  • Le Conte Y, Mohammedi A, Robinson GE (2001) Primer effects of a brood pheromone on honeybee behavioural development. Proc Roy Soc Lond B 268:163–168

    Article  CAS  Google Scholar 

  • Leoncini I, Le Conte Y, Costagliola G, Plettner E, Toth AL, Wang M, Huang Z, Becard JM, Crauser D, Slessor KN, Robinson GE (2004) Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. Proc Natl Acad Sci USA 101:17559–17564

    Article  PubMed  CAS  Google Scholar 

  • Lewin MR, Walters ET (1999) Cyclic GMP pathway is critical for inducing long-term sensitization of nociceptive sensory neurons. Nat Neurosci 2:18–23

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Greggers U (1985) Natural phototaxis and its relationship to colour vision in honeybees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 157:311–321

    Article  Google Scholar 

  • Moroz LL, Norekian TP, Pirtle TJ, Robertson KJ, Satterlie RA (2000) Distribution of NADPH-diaphorase reactivity and effects of nitric oxide on feeding and locomotory circuitry in the pteropod mollusc, Clione limacina. J Comp Neurol 427:274–284

    Article  PubMed  CAS  Google Scholar 

  • Moroz LL, Meech RW, Sweedler JV, Mackie GO (2004) Nitric oxide regulates swimming in the jellyfish Aglantha digitale. J Comp Neurol 471:26–36

    Article  PubMed  CAS  Google Scholar 

  • Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836

    Article  PubMed  CAS  Google Scholar 

  • Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U (2003) cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol 13:725–733

    Article  PubMed  CAS  Google Scholar 

  • Pankiw T, Roman R, Sagili RR, Zhu-Salzman K (2004) Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera). Naturwissenschaften 91:575–578

    Article  PubMed  CAS  Google Scholar 

  • Pennisi E (2005) GENETICS: A Genomic View of Animal Behavior. Science 307:30–32

    Article  PubMed  CAS  Google Scholar 

  • Qian Y, Chao DS, Santillano DR, Cornwell TL, Nairn AC, Greengard P, Lincoln TM, Bredt DS (1996) cGMP-dependent protein kinase in dorsal root ganglion: relationship with nitric oxide synthase and nociceptive neurons. J Neurosci 16:3130–8

    PubMed  CAS  Google Scholar 

  • Robinson GE (1992) Regulation of Division of Labor in Insect Societies. Ann Rev Entomol 37:637–665

    Article  CAS  Google Scholar 

  • Robinson GE (1999) Integrative animal behaviour and sociogenomics. Trends Ecol Evol 14:202–205

    Article  PubMed  Google Scholar 

  • Robinson GE, Ben-Shahar Y (2002) Social behavior and comparative genomics: new genes or new gene regulation? Genes Brain Behav 1:197–203

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE, Fahrbach SE, Winston ML (1997) Insect societies and the molecular biology of social behavior. Bioessays 19:1099–108

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. nature review genetics (in press)

  • Ruppell O, Pankiw T, Page RE Jr (2004) Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior. J Hered 95:481–491

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Tamura T, Kitamoto T, Kidokoro Y (2004) A clock gene, period, plays a key role in long-term memory formation in Drosophila. Proc Natl Acad Sci USA 101:16058–16063

    Article  PubMed  CAS  Google Scholar 

  • Scheiner R, Sokolowski MB, Erber J (2004) Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in Drosophila melanogaster. Learn Mem 11:303–311

    Article  PubMed  Google Scholar 

  • Schmidt H, Werner M, Heppenstall PA, Henning M, More MI, Kuhbandner S, Lewin GR, Hofmann F, Feil R, Rathjen FG (2002) cGMP-mediated signaling via cGKIalpha is required for the guidance and connectivity of sensory axons. J Cell Biol 159:489–498

    Article  PubMed  CAS  Google Scholar 

  • Schulz DJ, Huang ZY, Robinson GE (1998) Effects of colony food shortage on behavioral development in honey bees. Behav Ecol Sociobiol 42:295–303

    Article  Google Scholar 

  • Schulz DJ, Vermiglio MJ, Huang ZY, Robinson GE (2002) Effects of colony food shortage on social interactions in honey bee colonies. Insectes Soc 49:50–55

    Article  Google Scholar 

  • Schulz DJ, Elekonich MM, Robinson GE (2003) Biogenic amines in the antennal lobes and the initiation and maintenance of foraging behavior in honey bees. J Neurobiol 54:406–416

    Article  PubMed  CAS  Google Scholar 

  • Seeley TD (1995) The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press, Cambridge

    Google Scholar 

  • Shapira M, Thompson CK, Soreq H, Robinson GE (2001) Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. J Mol Neurosci 17:1–12

    Article  PubMed  CAS  Google Scholar 

  • Southwick EE, Moritz RFA (1987) Social control of air ventilation in colonies of honey bees, Apis mellifera. J Insect Physiol 33:623–626

    Article  Google Scholar 

  • Toma DP, Bloch G, Moore D, Robinson GE (2000) Changes in period mRNA levels in the brain and division of labor in honey bee colonies. Proc Natl Acad Sci USA 97:6914–6919

    Article  PubMed  CAS  Google Scholar 

  • Trumbo ST, Huang Z-Y, Robinson GE (1997) Division of labor between undertaker specialists and other middle-aged workers in honey bee colonies. Behav Ecol Sociobiol 41:151–163

    Article  Google Scholar 

  • Wheeler DE, Nijhout HF (2003) A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. Bioessays 25:994–1001

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Band MR, Bonaldo MF, Kumar CG, Liu L, Pardinas JR, Robertson HM, Soares MB, Robinson GE (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res 12:555–566

    Article  PubMed  Google Scholar 

  • Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299

    Article  PubMed  CAS  Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

I would like to thank Sarah Hartz, Gene Robinson, Lynda Ostedgaard, Christina Grozinger, Erica Smith, and an anonymous reviewer for invaluable comments on earlier versions of this manuscript. Images for figures are published with permissions from Z. Huang (http://photo.bees.net/gallery/), and S. Camazine (http://www.scottcamazine.com/photos/BeeBehavior/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ben-Shahar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Shahar, Y. The foraging gene, behavioral plasticity, and honeybee division of labor. J Comp Physiol A 191, 987–994 (2005). https://doi.org/10.1007/s00359-005-0025-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0025-1

Keywords

Navigation