Skip to main content
Log in

On strategy-proof social choice between two alternatives

  • Original Paper
  • Published:
Social Choice and Welfare Aims and scope Submit manuscript

Abstract

We study strategy-proof rules for choosing between two alternatives. We consider the full preference domain which allows for indifference. In this framework, for strategy-proof rules, ontoness does not imply efficiency. We weaken the requirement of efficiency to ontoness and characterize the class of strategy-proof rules. We argue that the notion of efficiency is not desirable always. Further, we provide a simple description of the class of onto, anonymous and strategy-proof rules in this framework. The key feature of our characterization results brings out the role played by indifferent agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For instance, see Dogan and Sanver (2007) for three or more alternatives with strict preferences. For two alternatives with strict preferences, see Theorem 1 of Barberà et al. (1991) and Corollary 3 of Ju (2003) for the case of single object.

  2. If we restrict our attention to strong group strategy-proof rules, then ontoness implies efficiency [see Barberà et al. (2012), Manjunath (2012) and Harless (2015)].

  3. See Section 3 in Núñez and Sanver (2017) for the case of two alternatives.

  4. The participation property was introduced in Moulin (1991) to avoid the no-show paradox. The no-show paradox can be viewed as a way to manipulate social choice rules by abstaining from voting.

  5. A profile \(R\in {\mathcal {R}}^n\) is called disagreement profile if \(N_a(R)\ne \emptyset \) and \(N_b(R)\ne \emptyset \).

References

  • Barberà S, Berga D, Moreno B (2012) Group strategy-proof social choice functions with binary ranges and arbitrary domains: characterization results. Int J Game Theory 41:791–808

    Article  Google Scholar 

  • Barberà S, Sonnenschein H, Zhou L (1991) Voting by committees. Econometrica 59:595–609

    Article  Google Scholar 

  • Dogan E, Sanver MR (2007) On the alternating use of “unanimity” and “surjectivity” in the Gibbard-Satterthwaite theorem. Econ Lett 96:140–143

    Article  Google Scholar 

  • Fishburn PC (1973) The theory of social choice. Princeton University Press, Princeton

    Google Scholar 

  • Harless P (2015) Reaching consensus: solidarity and strategic properties in binary social choice. Soc Choice Welfare 45:97–121

    Article  Google Scholar 

  • Ju B-G (2003) A characterization of strategy-proof voting rules for separable weak orderings. Soc Choice Welfare 21:469–499

    Article  Google Scholar 

  • Larsson B, Svensson L-G (2006) Strategy-proof voting on the full preference domain. Math Soc Sci 52:272–287

    Article  Google Scholar 

  • Manjunath V (2012) Group strategy-proofness and voting between two alternatives. Math Soc Sci 63:239–242

    Article  Google Scholar 

  • Moulin H (1991) Axioms of cooperative decision making, 15. Cambridge University Press, Cambridge

    Google Scholar 

  • Núñez M, Sanver MR (2017) Revisiting the connection between the no-show paradox and monotonicity. Math Soc Sci 90:9–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Pramanik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank Salvador Barbera, Jordi Masso, Debasis Mishra, Shin Sato, Arunava Sen, Shigehiro Serizawa, participants of the Delhi Economic Theory Workshop, participants of the 2017 Society for Economic Design meeting and seminar participants at the Nanjing Audit University for their comments and suggestions. We would also like to thank the associate editor and two anonymous referees for their extensive comments and suggestions that greatly helped in improving the manuscript. Anup Pramanik acknowledges financial assistance from JSPS KAKENHI-15K17021.

Appendices

Appendix

The Proof of Lemma 1

Proof

Note that if f is strategy-proof then it is weakly strategy-proof. So suppose that f is weakly strategy-proof, but to the contrary f is not strategy-proof. Then there exist an agent \(i \in N\) and a profile \(R \in {\mathcal {R}}^n\) and an \(i-\)deviation \(R^\prime \in {\mathcal {R}}\) of R such that \(R_i, R^\prime _i \in {\mathcal {P}}\) and \(f(R^\prime ) P_i f(R)\). So it follows that \(R_i \ne R^\prime _i\). Without loss of generality, assume that \(a P_i b\) and \(b P^\prime _i a\). So it follows that \(f(R) = b\) and \(f(R^\prime ) = a\). Now consider the profile \(R^\star \in {\mathcal {R}}^n\) such that \(R^\star _{N {\setminus } \{i\}} = R^\prime _{N {\setminus } \{i\}} = R_{N {\setminus } \{i\}}\), and \(a I^\star _i b\). Now weak strategy-proofness for the deviation from R to \(R^\star \) implies that \(f(R^\star ) = b\). On the other hand weak strategy-proofness for the deviation from \(R^\prime \) to \(R^\star \) implies that \(f(R^\star ) = a\), which contradicts the fact that \(f(R^\star ) = b\) and concludes the proof. \(\square \)

The Proof of Theorem 1

Proof

If part. Let \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}\) be a GVC rule. Let \({\mathcal {I}}^d\) be the committee for indifference default \(d\in \{a,b\}\) and \({\mathcal {F}}_{{\mathcal {I}}^d}\), the collection of committees for a with respect to \({\mathcal {I}}^d\). We show that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}\) is onto and strategy-proof.

To prove that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}\) is onto, we show that there exist \(R',R''\in {\mathcal {R}}^n\) such that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R')=a\) and \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R'')=b\). Let \(R'\) and \(R''\) be such that \(N_a(R')=N\) and \(N_b(R'')=N\) respectively. Note that \(N_{A}(R')=N_b(R')=\emptyset \), \(N_a(R')\in {\mathcal {F}}_{N{\setminus } N_{ab}(R'),{\mathcal {I}}^d}\) and \(N_{A}(R')\notin {\mathcal {I}}^d\). Therefore, \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R')=a\). Again, since \(N_{A}(R'')=N_a(R'')=\emptyset \), \(N_a(R'')\notin {\mathcal {F}}_{N{\setminus } N_{ab}(R''),{\mathcal {I}}^d}\) and \(N_{A}(R'')\notin {\mathcal {I}}^d\), we have \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R'')=b\).

Next we show that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}\) satisfies strategy-proofness. We consider \(R\in {\mathcal {R}}^n\) and \(R'_i\in {\mathcal {R}}\).

First we assume that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R)=a\). If \(aR_ib\), then i can not manipulate at R via \(R'_i\). If \(bP_ia\) then we show that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R'_i,R_{N {\setminus } \{i\}})=a\). The following two cases arise : (i) \(aI'_ib\) and (ii) \(aP'_ib\).

(i) Suppose \(aI'_ib\). Let \(d=a\). If \(N_{A}(R)\in {\mathcal {I}}^a\), then \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {I}}^a\). Therefore, \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R'_i,R_{N {\setminus } \{i\}})=a\). If \(N_{A}(R)\notin {\mathcal {I}}^a\), then \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R)=a\) implies that \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\). Now we consider the set \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\). If \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {I}}^a\), then \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R'_i,R_{N {\setminus } \{i\}})=a\). If \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {I}}^a\), then the property 2 of \({\mathcal {F}}_{{\mathcal {I}}^a}\) would imply that \(N_a(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\). Therefore, \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R'_i,R_{N {\setminus } \{i\}})=a\).

Let \(d=b\). Since \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R)=a\), \(N_{A}(R)\notin {\mathcal {I}}^b\) and \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^b}\). Now we consider the set \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\). If \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {I}}^b\), then by property 1 of \({\mathcal {F}}_{{\mathcal {I}}^b}\), \(i\in N_a(R)\) which is not possible. Therefore, \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {I}}^b\). Since \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^b}\) and \(N_a(R'_i,R_{N {\setminus } \{i\}})=N_a(R)\), by the property 2 of \({\mathcal {F}}_{{\mathcal {I}}^b}\) we have \(N_a(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^b}\). Therefore, \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R'_i,R_{N {\setminus } \{i\}})=a\).

(ii) Suppose \(aP'_ib\). Let \(d=a\). Note that \(N_{A}(R'_i,R_{N {\setminus } \{i\}})=N_{A}(R)\). If \(N_{A}(R)\in {\mathcal {I}}^a\), then \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R'_i,R_{N {\setminus } \{i\}})=a\). If \(N_{A}(R)\notin {\mathcal {I}}^a\), then \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R)=a\) implies that \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\). By monotonicity property of \({\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\), \(N_a(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\). Since \(N_{A}(R'_i,R_{N {\setminus } \{i\}})=N_{A}(R)\), \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R'_i,R_{N {\setminus } \{i\}})=a\).

Let \(d=b\). Since \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R)=a\), \(N_{A}(R)\notin {\mathcal {I}}^b\) and \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^b}\). Also, since \(N_{A}(R'_i,R_{N {\setminus } \{i\}})=N_{A}(R)\), \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {I}}^b\). By monotonicity property of \({\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^b}\), \(N_a(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^b}\). Therefore, \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R'_i,R_{N {\setminus } \{i\}})=a\).

Now we assume that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R)=b\). If \(bR_ia\), then i can not manipulate. If \(aP_ib\) then we show that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R'_i,R_{N {\setminus } \{i\}})=b\). The following two cases arise : (i) \(aI'_ib\) and (ii) \(bP'_ia\).

(i) Suppose \(aI'_ib\). Let \(d=a\). Since \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R)=b\), \(N_{A}(R)\notin {\mathcal {I}}^a\) and \(N_a(R)\notin {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\). Now we consider the set \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\). If \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {I}}^a\), then by property 1 of \({\mathcal {F}}_{{\mathcal {I}}^a}\), \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\) which is not possible. Therefore, \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {I}}^a\). Since \(N_a(R)\notin {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\) and \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {I}}^a\), property 3 of \({\mathcal {F}}_{{\mathcal {I}}^a}\) would imply that \(N_a(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\). Therefore, \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R'_i,R_{N {\setminus } \{i\}})=b\).

Let \(d=b\). If \(N_{A}(R)\in {\mathcal {I}}^b\), then (by monotonicity property of \({\mathcal {I}}^b\)) \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {I}}^b\). Therefore, \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R'_i,R_{N {\setminus } \{i\}})=b\). If \(N_{A}(R)\notin {\mathcal {I}}^b\), then \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R)=b\) implies that \(N_a(R)\notin {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^b}\). Now we consider the set \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\). If \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {I}}^b\), then \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R'_i,R_{N {\setminus } \{i\}})=b\). If \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {I}}^b\), then property 3 of \({\mathcal {F}}_{{\mathcal {I}}^b}\) would imply that \(N_a(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\). Therefore, \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R'_i,R_{N {\setminus } \{i\}})=b\).

(ii) Suppose \(bP'_ia\). Note that \(N_{A}(R'_i,R_{N {\setminus } \{i\}})=N_{A}(R)\). Let \(d=a\). Since \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R)=b\), \(N_{A}(R)\notin {\mathcal {I}}^a\) and \(N_a(R)\notin {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a}\). Since \(N_{A}(R'_i,R_{N {\setminus } \{i\}})=N_{A}(R)\), we have \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {I}}^a\) and \(N_a(R)\notin {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\). Note that \(N_a(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\), otherwise by monotonicity property of \({\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\), \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\) which is not possible. Therefore, \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R'_i,R_{N {\setminus } \{i\}})=b\).

Let \(d=b\). If \(N_{A}(R)\in {\mathcal {I}}^b\), then \(N_{A}(R'_i,R_{N {\setminus } \{i\}})\in {\mathcal {I}}^b\). Therefore, \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R'_i,R_{N {\setminus } \{i\}})=b\). So, we consider that \(N_{A}(R)\notin {\mathcal {I}}^b\). since \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R)=b\), \(N_a(R)\notin {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^b}\). Note that since \(N_{A}(R'_i,R_{N {\setminus } \{i\}})=N_{A}(R)\), we have \(N_a(R'_i,R_{N {\setminus } \{i\}})\notin {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\), otherwise by monotonicity property of \({\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\), \(N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R'_i,R_{N {\setminus } \{i\}}),{\mathcal {I}}^a}\) which is not possible. Therefore, \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R'_i,R_{N {\setminus } \{i\}})=b\).

Only if part. Let f be an onto and strategy-proof SCF. Let \({\bar{R}}\in {\mathcal {R}}^n\) denotes the preference profile where all agents are indifferent between a and b. We show that if \(f({\bar{R}})=a\), then there exists a committee for indifference default a, \({\mathcal {I}}^a\) and a collection of committees for a with respect to \({\mathcal {I}}^a\), \({\mathcal {F}}_{{\mathcal {I}}^a}\), such that for all \(R\in {\mathcal {R}}^n\);

$$\begin{aligned} f(R) = f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R). \end{aligned}$$

Similarly, if \(f({\bar{R}})=b\), then there exists a committee for indifference default b, \({\mathcal {I}}^b\) and a collection of committees for a with respect to \({\mathcal {I}}^b\), \({\mathcal {F}}_{{\mathcal {I}}^b}\), such that for all \(R\in {\mathcal {R}}^n\);

$$\begin{aligned} f(R) = f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R). \end{aligned}$$

In the following, we consider these two cases.

Case 1: \(f({\bar{R}})=a\). For each \(M\subseteq N\), let \(g^M_f\) be the restriction of f to \(\{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M \}\). In other words, let \(g^M_f : \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M \} \longrightarrow A\) be a function defined as \(g^M_f(R) = f(R)\) for all \(R \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M \}\). First we show the following claim.

Claim 1

For each \(M\subseteq N\), either \(g^{M}_f\) is a constant rule that picks a or \(g^{M}_f\) is onto.

Proof

If \(M=\emptyset \), then it is trivial that \(g^{M}_f\) is a constant rule that picks a. Therefore, for contradiction, we assume that there exists \(\emptyset \ne M'\subseteq N\) such that \(g^{M'}_f\) is a constant rule that picks b. W.o.l.g. let \(M'=\{1,2,\ldots ,k\}\), \(k\le n\). Let \(R'\) be such that \(aI'_ib\) if \(i\in \{k+1,\ldots ,n\}\) and \(aP'_ib\) if \(i\in \{1,\ldots ,k\}\). Since \(g^{M'}_f\) is a constant rule that picks b, \(f(R')=b\). Applying strategy-proofness, we have

$$\begin{aligned} f(R'_1,R'_2,\ldots ,R'_n)&= f(R_1,\ldots ,R_{k-1},{\bar{R}}_k,R'_{k+1},\ldots ,R'_n) \\&= f(R_1,\ldots ,R_{k-2},{\bar{R}}_{k-1},{\bar{R}}_k,R'_{k+1},\ldots ,R'_n) \\&\ \vdots \\&= f({\bar{R}}_1,\ldots ,{\bar{R}}_k,R'_{k+1},\ldots ,R'_n) \\&= f({\bar{R}})\\&= b \end{aligned}$$

This contradicts \(f({\bar{R}})=a\). \(\square \)

Let \({\mathcal {I}}^a(f) = \{S\subseteq N: g^{N{\setminus } S}_f \textit{ is constant rule that picks a }\}\). Next we show the following fact.

Fact 1

\({\mathcal {I}}^a(f)\) is a committee for indifference default a.

Proof

We show that \({\mathcal {I}}^a(f)\) satisfies following two properties.

  1. 1.

    Non-emptiness Since \(N\in {\mathcal {I}}^a(f)\), \({\mathcal {I}}^a(f)\ne \emptyset \). Since f is onto and strategy-proof, \(g^N_f\) is onto. Therefore, \(\emptyset \notin {\mathcal {I}}^a(f)\).

  2. 2.

    Monotonicity Let \(S\in {\mathcal {I}}^a(f)\) , \(T\subseteq N\) and \(S\subseteq T\). We show that \(T\in {\mathcal {I}}^a(f)\). Since \(g^{N{\setminus } S}_f\) is a constant rule that picks a, \(g^{N{\setminus } T}_f\) is a constant rule that picks a. Therefore, \(T\in {\mathcal {I}}^a(f)\).

\(\square \)

The following claim is a direct implication of Theorem 1 of Barberà et al. (1991). Hence, we omit the proof.

Claim 2

For each \(M\subseteq N\), if \(g^{M}_f\) is onto, then it is a voting by committee for a at M.

For each \(M\subseteq N\) such that \(g^{M}_f\) is onto, Claim 2 implies that \(g^{M}_f\) is a voting by committee for a at M. Let \({\mathcal {F}}^{g^{M}_f}_M\) be the committee for a at M associated with \(g^{M}_f\). Now, for each \(M\subseteq N\), we define the set \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\) as follows. If \(g^{M}_f\) is onto, then \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}= {\mathcal {F}}^{g^{M}_f}_M\). If \(g^{M}_f\) is not onto i.e. \(g^{M}_f\) is a constant rule that picks a, then \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}= \emptyset \).

First we show the following fact.

Fact 2

For each \(M\subseteq N\), \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\) is a committee for a at M with respect to \({\mathcal {I}}^a(f)\).

Proof

We show that for each \(M\subseteq N\), \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\) satisfies following two properties.

  1. 1.

    Non-emptiness with respect to\({\mathcal {I}}^a(f)\): If \(N{\setminus } M\notin {\mathcal {I}}^a(f)\), then \(g^{M}_f\) is onto. Therefore, \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}={\mathcal {F}}^{g^{M}_f}_M\). Since \({\mathcal {F}}^{g^{M}_f}_M\ne \emptyset \) and \(\emptyset \notin {\mathcal {F}}^{g^{M}_f}_M\), we have \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\ne \emptyset \) and \(\emptyset \notin {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\). This follows from Claim 2 and Barberà et al. (1991). If \(N{\setminus } M\in {\mathcal {I}}^a(f)\), then \(g^{M}_f\) is a constant rule that picks a. Therefore, \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}=\emptyset \) by definition.

  2. 2.

    Monotonicity W.o.l.o.g. we assume that \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\ne \emptyset \). Therefore \({\mathcal {F}}_{M,{\mathcal {I}}^a(f)}={\mathcal {F}}^{g^{M}_f}_M\). Since \({\mathcal {F}}^{g^{M}_f}_M\) satisfies monotonicity (from Claim 2 and Barberà et al. (1991)), we have that for each \(S\in {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\) and \(T\subseteq M\), if \(S\subseteq T\), then \(T\in {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\).

\(\square \)

Next we show that \({\mathcal {F}}_{{\mathcal {I}}^a(f)} \equiv \{{\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\}_{M\subseteq N}\) satisfies the properties of a collection of committees for a with respect to \({\mathcal {I}}^a(f)\).

Fact 3

\({\mathcal {F}}_{{\mathcal {I}}^a(f)} \equiv \{{\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\}_{M\subseteq N}\) satisfies the properties of a collection of committees for a with respect to \({\mathcal {I}}^a(f)\).

Proof

We show that for each \(M\subseteq N\) and each \(i\in M\):

  1. 1.

    If \(N{\setminus } M\notin {\mathcal {I}}^a(f)\) and \(\{N{\setminus } M\}\cup \{i\}\in {\mathcal {I}}^a(f)\), then for all \(S \subseteq M\) such that \(i\in S\), \(S\in {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\). Suppose not. There exist \(M\subseteq N\) and \(S\subseteq M\) such that \(N{\setminus } M\notin {\mathcal {I}}^a(f)\), \(\{N{\setminus } M\}\cup \{i\}\in {\mathcal {I}}^a(f)\) and \(i\in S\notin {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\). Let \(R\in {\mathcal {R}}^n\) be a preference profile such that \(aI_kb\) for all \(k\in \{N{\setminus } M\}\), \(aP_kb\) for all \(k\in S\) and \(bP_ka\) for all \(k\in M{\setminus } S\). Note that \(g^M_f(R)=b\). Therefore \(f(R)=b\). Since f is strategy-proof, \(f(R'_i,R_{N {\setminus } \{i\}})=b\) where \(R'_i= aI'_ib\). This contradicts with the fact that \(\{N{\setminus } M\}\cup \{i\}\in {\mathcal {I}}^a(f)\).

  2. 2.

    If \(S\in {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\), \(i\notin S\) and \(\{N{\setminus } M\}\cup \{i\}\notin {\mathcal {I}}^a(f)\), then \(S\in {\mathcal {F}}_{M{\setminus }\{i\},{\mathcal {I}}^a(f)}\). Let \(R\in {\mathcal {R}}^n\) be a preference profile such that \(aI_kb\) for all \(k\in \{N{\setminus } M\}\cup \{i\}\), \(aP_kb\) for all \(k\in S\) and \(bP_ka\) for all \(k\in M{\setminus }\{S\cup i\}\). Let \(R'=(R'_i,R_{N {\setminus } \{i\}})\) where \(R'_i=bP'_ia\). Since \(S\in {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\), \(g^M_f(R')=a\). Therefore \(f(R')=a\). Then by strategy-proofness, \(f(R)=a\), i.e \(g^{M{\setminus } i}_f(R)=a\). Since \(\{N{\setminus } M\}\cup i\notin {\mathcal {I}}^a(f)\), \(S\in {\mathcal {F}}_{M{\setminus } i,{\mathcal {I}}^a(f)}\).

  3. 3.

    If \(N{\setminus } M\notin {\mathcal {I}}^a(f)\), \(S\cup \{i\}\notin {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\) and \(\{N{\setminus } M\}\cup \{i\}\notin {\mathcal {I}}^a(f)\), then \(S\notin {\mathcal {F}}_{M{\setminus }\{i\},{\mathcal {I}}^a(f)}\). Let \(R\in {\mathcal {R}}^n\) be be a preference profile such that \(aI_kb\) for all \(k\in N{\setminus } M\), \(aP_kb\) for all \(k\in S\cup i\) and \(bP_ka\) for all \(k\in M{\setminus }\{S\cup i\}\). Let \(R'=(R'_i,R_{N {\setminus } \{i\}})\) where \(R'_i=bI'_ia\). Since \(S \cup i\notin {\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\), \(g^M_f(R)=b\). Therefore \(f(R)=b\). Then by strategy-proofness, \(f(R')=b\), i.e \(g^{M{\setminus } i}_f(R')=b\). Since \(\{N{\setminus } M\}\cup i\notin {\mathcal {I}}^a(f)\), \(S\notin {\mathcal {F}}_{M{\setminus } i,{\mathcal {I}}^a(f)}\).

\(\square \)

We complete this case by showing that for all \(R\in {\mathcal {R}}^n\);

$$\begin{aligned} f(R) = h^{{\mathcal {I}}^a(f)}_{{\mathcal {F}}_{{\mathcal {I}}^a(f)}}(R). \end{aligned}$$

Consider any profile R. By Claim 1, \(g^{N{\setminus } N_A(R)}_f\) is either a constant rule that picks a or it is an onto rule. Let \(g^{N{\setminus } N_A(R)}_f\) be a constant rule that picks a. Therefore, \(g^{N{\setminus } N_A(R)}_f(R)=a\) implies that \(f(R)=a\). Which, in turn, implies that \(N_{A}(R)\in {\mathcal {I}}^a(f)\); i.e.; \(h^{{\mathcal {I}}^a(f)}_{{\mathcal {F}}_{{\mathcal {I}}^a(f)}}(R) = a\).

Now we assume that \(g^{N{\setminus } N_A(R)}_f\) is an onto rule. Therefore, \(N_{A}(R)\notin {\mathcal {I}}^a(f)\). By Claim 2, \(g^{N{\setminus } N_A(R)}_f\) is a voting by committee for a at \(N{\setminus } N_A(R)\). Let \({\mathcal {F}}^{g^{N{\setminus } N_A(R)}_f}_{N{\setminus } N_A(R)}\) be the committee for a at \(N{\setminus } N_A(R)\) associated with \(g^{N{\setminus } N_A(R)}_f\). Therefore, \(g^{N{\setminus } N_A(R)}_f(R)=a\) if \(N_a(R)\in {\mathcal {F}}^{g^{N{\setminus } N_A(R)}_f}_{N{\setminus } N_A(R)}\) and \(g^{N{\setminus } N_A(R)}_f(R)=b\) if \(N_a(R)\notin {\mathcal {F}}^{g^{N{\setminus } N_A(R)}_f}_{N{\setminus } N_A(R)}\). Since \(g^{N{\setminus } N_A(R)}_f(R)=f(R)\) and

\({\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^a(f)} = {\mathcal {F}}^{g^{N{\setminus } N_A(R)}_f}_{N{\setminus } N_A(R)}\), we are done.

Case 2: \(f({\bar{R}})=b\). A similar argument (as in case 1) shows that there exists a committee for indifference default b, \({\mathcal {I}}^b\) and a collection of committees for a with respect to \({\mathcal {I}}^b\), \({\mathcal {F}}_{{\mathcal {I}}^b}\), such that for all \(R\in {\mathcal {R}}^n\);

$$\begin{aligned} f(R) = f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R). \end{aligned}$$

\(\square \)

The Proof of Theorem 2

We prove this theorem with the help of the following propositions. The first proposition is a direct implication of adding anonymity on Theorem 1. For this purpose, we introduce the following definitions. A committee for indifference default \(d\in \{a,b\}\), \({\mathcal {I}}^d\), is anonymous, if \(S \in {\mathcal {I}}^d\) implies \(S^\prime \in {\mathcal {I}}^d\) for any \(S^\prime \subseteq N\) such that \(|S| = |S^\prime |\). If a committee for indifference default d is anonymous, then we refer it as anonymous committee for indifference defaultd.

Let \(M\subseteq N\) and \({\mathcal {I}}^d\) be a committee for indifference default d. A committee for a at M with respect to \({\mathcal {I}}^d\), \({\mathcal {F}}_{M,{\mathcal {I}}^d}\), is anonymous, if \(S \in {\mathcal {F}}_{M,{\mathcal {I}}^d}\) implies \(S^\prime \in {\mathcal {F}}_{M,{\mathcal {I}}^d}\) for any \(S^\prime \subseteq M\) such that \(|S| = |S^\prime |\). If a committee for a at M with respect to \({\mathcal {I}}^d\) is anonymous, we refer it as anonymous committee foraatMwith respect to\({\mathcal {I}}^d\).

A collection of anonymous committees forawith respect to\({\mathcal {I}}^d\), is a collection of committees for a with respect to \({\mathcal {I}}^d\), satisfying following properties

  1. 1.

    For any \(M\subseteq N\), \({\mathcal {F}}_{M,{\mathcal {I}}^d}\) is a anonymous committees for a at M with respect to \({\mathcal {I}}^d\).

  2. 2.

    For any \(M,M'\subseteq N\), \(S\subseteq M\) and \(S'\subseteq M'\) where \(|M|=|M'|\) and \(|S|=|S'|\), if \( S\in {\mathcal {F}}_{M,{\mathcal {I}}^d}\) then \( S'\in {\mathcal {F}}_{M',{\mathcal {I}}^d}\).

We define generalized voting by anonymous committees (GVAC), as follows.

Definition 13

A SCF is GVAC, denoted by \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}\), if there exists a anonymous committee for indifference default d, \({\mathcal {I}}^d\) where \(d\in A\) and a collection of anonymous committees for a with respect to \({\mathcal {I}}^d\), \({\mathcal {F}}_{{\mathcal {I}}^d}\), such that for all \(R\in {\mathbb {R}}^n\);

$$\begin{aligned} f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}(R) = \left\{ \begin{array}{l l} d &{} \quad \text { if } N_{A}(R)\in {\mathcal {I}}^d\\ a &{} \quad \text { if } N_a(R)\in {\mathcal {F}}_{N{\setminus } N_{A}(R),{\mathcal {I}}^d} \text { and }N_{A}(R)\notin {\mathcal {I}}^d\\ b &{} \quad \text { otherwise }\\ \end{array} \right. \end{aligned}$$

This brings us to the following proposition.

Proposition 4

Let \(f : {\mathcal {R}}^n \longrightarrow A\) be an onto SCF. If f is anonymous and strategy-proof, then f is GVAC.

Proof

Let f be an onto, anonymous and strategy-proof SCF. Let \({\bar{R}}\in {\mathcal {R}}^n\) denotes the preference profile where all agents are indifferent between a and b. We show that if \(f({\bar{R}})=a\), then there exists a anonymous committee for indifference default a, \({\mathcal {I}}^a\) and a collection of anonymous committees for a with respect to \({\mathcal {I}}^a\), \({\mathcal {F}}_{{\mathcal {I}}^a}\), such that for all \(R\in {\mathcal {R}}^n\);

$$\begin{aligned} f(R) = f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R). \end{aligned}$$

Similarly, if \(f({\bar{R}})=b\), then there exists a anonymous committee for indifference default b, \({\mathcal {I}}^b\) and a collection of anonymous committees for a with respect to \({\mathcal {I}}^b\), \({\mathcal {F}}_{{\mathcal {I}}^b}\), such that for all \(R\in {\mathcal {R}}^n\);

$$\begin{aligned} f(R) = f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R). \end{aligned}$$

In the following, we consider these two cases.

Case 1: \(f({\bar{R}})=a\) : As f is strategy-proof and onto, we have the following.

  • For any \(M \subseteq N\), let \(g^M_f : \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M \} \longrightarrow A\) be a function defined as \(g^M_f(R) = f(R)\) for all \(R \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M \}\). Then either \(g^{M}_f\) is a constant rule that picks a or \(g^{M}_f\) is onto. This follows from Claim 1 in the proof of Theorem 1.

  • \({\mathcal {I}}^a(f) = \{S\subseteq N: g^{N {\setminus } S}_f \text { is constant rule that picks } a\}\) is a committee for indifference default a. This follows from Fact 1 in the proof of Theorem 1.

  • \({\mathcal {F}}_{{\mathcal {I}}^a(f)} \equiv \{{\mathcal {F}}_{M,{\mathcal {I}}^a(f)}\}_{M\subseteq N}\), where

    $$\begin{aligned} {\mathcal {F}}_{M,{\mathcal {I}}^a(f)} = \left\{ \begin{array}{cl} \left\{ S \subseteq M : \begin{array}{c} \exists \text { } R \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M \} \\ \text { with } S = N_a(R) \subseteq M \text { and } g^{M}_f(R) = a \end{array}\right\} &{} \quad \text { if } \begin{array}{l} g^{M}_f \text { is an }\\ \text { onto function } \end{array} \\ \\ \emptyset &{} \quad \text { if } \begin{array}{l} g^{M}_f \text { is a }\\ \text { constant rule }\\ \text { that picks a} \end{array} \end{array}\right. \end{aligned}$$

    is a collection of committees for a with respect to \({\mathcal {I}}^a(f)\). This follows from Claim 2 and Facts 2 and 3 in the proof of Theorem 1.

Next we are going to show that \({\mathcal {I}}^a(f)\) is an anonymous committee for indifference default a.

Claim 3

\({\mathcal {I}}^a(f)\) is an anonymous committee for indifference default a.

Proof

Consider \(S, S^\prime \subseteq N\) such that \(|S| = |S^\prime |\). Suppose \(S \in {\mathcal {I}}^a(f)\), but to the contrary \(S^\prime \notin {\mathcal {I}}^a(f)\). This implies that \(g^{N {\setminus } S}_f\) is a constant rule that selects a, but \(g^{N {\setminus } S^\prime }_f\) is onto. So there exists a \(R \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin N {\setminus } S^\prime \}\) such that \(g^{N {\setminus } S^\prime }_f(R) = b\). As \(|S| = |S^\prime |\), we have \(|N {\setminus } S| = |N {\setminus } S^\prime |\). As \(N_a(R) \subseteq N {\setminus } S^\prime \), there exists \(T \subseteq N {\setminus } S\) such that \(|N_a(R)| = |T|\) and \(|(N {\setminus } S^\prime ) {\setminus } N_a(R)| = |(N {\setminus } S) \setminus T|\). So we can define the following functions; \(\sigma _1 : S^\prime \longrightarrow S\), \(\sigma _2 : N_a(R) \longrightarrow T\) and \(\sigma _3 : (N {\setminus } S^\prime ) {\setminus } N_a(R) \longrightarrow (N {\setminus } S) \setminus T\); which are all one-to-one and onto. Next, we define a permutation \(\sigma : N \longrightarrow N\) as follows.

$$\begin{aligned} \sigma (i) = \left\{ \begin{array}{cl} \sigma _1(i) &{} \quad if i \in S^\prime \\ \sigma _2(i) &{} \quad if i \in N_a(R) \\ \sigma _3(i) &{} \quad if i \in (N {\setminus } S^\prime ) {\setminus } N_a(R) \\ \end{array}\right. \end{aligned}$$

Note that \(\sigma \) is a well-defined permutation and \(\sigma (R) \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin N {\setminus } S\}\). This implies that \(g^{N {\setminus } S}_f(\sigma (R)) = a\); i.e.; \(f(\sigma (R)) = a\). But this contradicts anonymity of f as \(g^{N {\setminus } S^\prime }_f(R) = b\) implies \(f(R) = b\). This concludes the proof of Claim 3. \(\square \)

Next we show that \({\mathcal {F}}_{{\mathcal {I}}^a(f)}\) is a collection of anonymous committees for a with respect to \({\mathcal {I}}^a(f)\).

Claim 4

\({\mathcal {F}}_{{\mathcal {I}}^a(f)}\) is a collection of anonymous committees for a with respect to \({\mathcal {I}}^a(f)\).

Proof

First we show that for every \(M \subseteq N\), \({\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\) is a anonymous committees for a at M with respect to \({\mathcal {I}}^a(f)\). First note that as f is anonymous, so for any \(M \subseteq N\), it follows that \(g^{M}_f\) is also anonymous. Now for any \(M \subseteq N\), consider \(S, S^\prime \subseteq M\) such that \(|S| = |S^\prime |\). Suppose for contradiction that \(S \in {\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\), but \(S^\prime \notin {\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\). This implies that there exists a profile \(R \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M\}\) such that \(N_a(R) = S\) and \(g^{M}_f(R) = a\). As \(|S| = |S^\prime |\), we have \(|M {\setminus } S| = |M {\setminus } S^\prime |\). So we can define the following functions; \(\sigma _1 : S \longrightarrow S^\prime \) and \(\sigma _2 : M {\setminus } S \longrightarrow M {\setminus } S^\prime \); which are all one-to-one and onto. Next, we define a permutation \(\sigma : N \longrightarrow N\) as follows.

$$\begin{aligned} \sigma (i) = \left\{ \begin{array}{cl} i &{} \quad if i \in N {\setminus } M \\ \sigma _1(i) &{} \quad if i \in S \\ \sigma _2(i) &{} \quad if i \in M {\setminus } S \\ \end{array}\right. \end{aligned}$$

Note that \(\sigma \) is a well-defined permutation and \(\sigma (R) \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M\}\) and \(N_a(R) = S^\prime \). Now \(S^\prime \notin {\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\) implies that \(g^{M}_f(\sigma (R)) = b\) because \(g^{M}_f\) is onto. But this contradicts anonymity of \(g^{M}_f\), as \(g^{M}_f(R) = a\). This shows that for every \(M \subseteq N\), \({\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\) is a anonymous committee for a at M with respect to \({\mathcal {I}}^a(f)\). Next, consider any \(M, M^\prime \subseteq N\) and \(S \subseteq M\) and \(S^\prime \subseteq M^\prime \) such that \(|M| = |M^\prime |\) and \(|S| = |S^\prime |\). We are going to show that if \(S \in {\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\), then \(S^\prime \in {\mathcal {F}}_{M^\prime , {\mathcal {I}}^a(f)}\). So suppose for contradiction that \(S \in {\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\), but \(S^\prime \notin {\mathcal {F}}_{M^\prime , {\mathcal {I}}^a(f)}\). As \(S \in {\mathcal {F}}_{M, {\mathcal {I}}^a(f)}\), there exists a profile \(R \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M\}\) such that \(N_a(R) = S\) and \(g^{M}_f(R) = a\). As \(|M| = |M^\prime |\) and \(|S| = |S^\prime |\), so it follows that \(|M {\setminus } S| = |M^\prime {\setminus } S^\prime |\) and \(|N {\setminus } M| = |N {\setminus } M^\prime |\). So we can define the following functions; \(\sigma _4 : N {\setminus } M \longrightarrow N {\setminus } M^\prime \), \(\sigma _5 : S \longrightarrow S^\prime \) and \(\sigma _6 : M {\setminus } S \longrightarrow M^\prime {\setminus } S^\prime \); which are all one-to-one and onto. Next, we define a permutation \(\sigma ^\star : N \longrightarrow N\) as follows.

$$\begin{aligned} \sigma ^\star (i) = \left\{ \begin{array}{cl} \sigma _4(i) &{} \quad if i \in N {\setminus } M \\ \sigma _5(i) &{} \quad if i \in S \\ \sigma _6(i) &{} \quad if i \in M {\setminus } S \\ \end{array}\right. \end{aligned}$$

Note that \(\sigma ^\star \) is a well-defined permutation and \(\sigma ^\star (R) \in \{R\in {\mathcal {R}}^n: aI_ib \textit{ iff } i\notin M^\prime \}\) and \(N_a(R) = S^\prime \). As \(g^{M}_f\) is onto, so it follows that \(g^{M^\prime }_f\) is also onto. Otherwise there would be a violation of Claim 3 as \(|N {\setminus } M| = |N {\setminus } M^\prime |\). Then \(S^\prime \notin {\mathcal {F}}_{M^\prime , {\mathcal {I}}^a(f)}\) implies that \(g^{M^\prime }_f(\sigma ^\star (R)) = b\); i.e.; \(f(\sigma ^\star (R)) = b\). This contradicts anonymity of f as \(g^{M}_f(R) = a\) implies that \(f(R) = a\). This concludes the proof of Claim 4. \(\square \)

We complete this case by showing that for all \(R\in {\mathcal {R}}^n\);

$$\begin{aligned} f(R) = f^{{\mathcal {I}}^a(f)}_{{\mathcal {F}}_{{\mathcal {I}}^a(f)}}(R). \end{aligned}$$

This follows from the definition of \({\mathcal {I}}^a(f)\) and \({\mathcal {F}}_{{\mathcal {I}}^a(f)}\) as shown at the end of case 1 in the proof of the only if part of Theorem 1.

Case 2: \(f({\bar{R}})=b\) : A similar argument (as in case 1) shows that there exists a anonymous committee for indifference default b, \({\mathcal {I}}^b\) and a collection of anonymous committees for a with respect to \({\mathcal {I}}^b\), \({\mathcal {F}}_{{\mathcal {I}}^b}\), such that for all \(R\in {\mathcal {R}}^n\); \(f(R) = f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R).\)\(\square \)

In the following proposition, we show that any GVAC rule can be described as either a quota rule with indifference default a or a quota rule with indifference default b.

Proposition 5

Let \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}}\) be a GVAC rule. Then either there exists a quota rule with indifference default a (\(f^{k, x}_a\)) such that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}} \equiv f^{k, x}_a\) or a quota rule with indifference default b (\(f^{k, y}_b\)) such that \(f^{{\mathcal {I}}^d}_{{\mathcal {F}}_{{\mathcal {I}}^d}} \equiv f^{k, y}_b\).

Proof

Let \({\mathcal {W}}\) be any collection of subsets of N. We denote \(Q({\mathcal {W}})\) as the cardinality of \(S \in {\mathcal {W}}\) such that S contains the least number of agents among all sets in \({\mathcal {W}}\); i.e;

$$\begin{aligned} Q({\mathcal {W}}) = \displaystyle \min _{S \in {\mathcal {W}}} |S|, \text { where } {\mathcal {W}} \subseteq 2^N. \end{aligned}$$

We prove Proposition 5 with the help of the following lemmas. \(\square \)

Lemma 3

For the GVAC rule \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}\), we have the following.

  1. 1.

    \(1 \le Q({\mathcal {I}}^a)=k\le n\).

  2. 2.

    \({\mathcal {F}}_{M,{\mathcal {I}}^a}\) satisfies following conditions:

    1. 2.1

      For all \(M\subseteq N\), if \(|M|\le n-k\) then \({\mathcal {F}}_{M,{\mathcal {I}}^a}=\emptyset \).

    2. 2.2

      For all \(M,M'\subseteq N\) such that \(|M|=|M'|> n-k\), \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a})=Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\) and \({\mathcal {F}}_{M,{\mathcal {I}}^a}\ne \emptyset \) and \({\mathcal {F}}_{M',{\mathcal {I}}^a}\ne \emptyset \).

    3. 2.3

      For all \(M\subseteq N\) such that \(|M|=n-k+l\) where \(l\in \{1,\ldots ,k\}\), we have \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a})\in \{1,\ldots ,l\}\).

    4. 2.4

      For all \(M,M'\subseteq N\) such that \(|M'|=|M|-1> n-k\), \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a})\ge Q({\mathcal {F}}_{M',{\mathcal {I}}^a}) \ge Q({\mathcal {F}}_{M,{\mathcal {I}}^a}) - 1\).

Proof

As \({\mathcal {I}}^a\) is an anonymous committee for indifference default a, it follows that \(N \in {\mathcal {I}}^a\) and \(\emptyset \notin {\mathcal {I}}^a\) (Non-emptyness condition of \({\mathcal {I}}^a\)). This implies that \(1 \le Q({\mathcal {I}}^a)=k\le n\).

Next we prove statement 2.1. So consider a \(M\subseteq N\) such that \(|M|\le n-k\). This implies that \(|N {\setminus } M| \ge k\). As \(Q({\mathcal {I}}^a)=k\), monotonicity and anonymity property of \({\mathcal {I}}^a\) implies that \(N {\setminus } M \in {\mathcal {I}}^a\). Then non-emptyness with respect to \({\mathcal {I}}^a\) property of \({\mathcal {F}}_{{\mathcal {I}}^a}\) implies that \({\mathcal {F}}_{M,{\mathcal {I}}^a}=\emptyset \).

Next we prove statement 2.2. So consider \(M,M'\subseteq N\) such that \(|M|=|M'|> n-k\). This implies that \(|N {\setminus } M| = |N {\setminus } M'| < k\). As \(Q({\mathcal {I}}^a)=k\), it follows that \(N {\setminus } M \notin {\mathcal {I}}^a\) and \(N {\setminus } M' \notin {\mathcal {I}}^a\). So from the non-emptyness with respect to \({\mathcal {I}}^a\) property of \({\mathcal {F}}_{{\mathcal {I}}^a}\), it follows that \({\mathcal {F}}_{M,{\mathcal {I}}^a} \ne \emptyset \) and \({\mathcal {F}}_{M',{\mathcal {I}}^a} \ne \emptyset \). Also as \({\mathcal {F}}_{{\mathcal {I}}^a}\) is anonymous, it follows that \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a})=Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\) from the definition of Q.

Next we prove statement 2.3. So consider \(M\subseteq N\) such that \(|M|=n-k+l\) where \(l\in \{1,\ldots ,k\}\). Suppose for contradiction that \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a}) > l\). So it follows that for all \(S \in {\mathcal {F}}_{M,{\mathcal {I}}^a}\), \(|S| > l\). Now we consider the situation when \(l = 1\). Then \(|M|=n-k+1\) implies that \(|N {\setminus } M| = k - 1\). As \(Q({\mathcal {I}}^a)=k\), it follows, from the definition of Q, that \(N {\setminus } M \notin {\mathcal {I}}^a\). Now consider an \(i \in M\) and the coalition \((N {\setminus } M) \cup \{i\}\). Note that \(|(N {\setminus } M) \cup \{i\}| = k\). As \({\mathcal {I}}^a\) is an anonymous committee for indifference default a, it follows that \((N {\setminus } M) \cup \{i\} \in {\mathcal {I}}^a\). Then as \({\mathcal {F}}_{{\mathcal {I}}^a}\) is a collection of committees for a with respect to \({\mathcal {I}}^a\), it follows by using property 1 that \(\{i\} \in {\mathcal {F}}_{M,{\mathcal {I}}^a}\). This contradicts our assumption that for all \(S \in {\mathcal {F}}_{M,{\mathcal {I}}^a}\), \(|S| > 1\). Now suppose that for all \(M\subseteq N\) such that \(|M|=n-k+l\) where \(l\in \{1,\ldots ,k-1\}\), we have \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a})\in \{1,\ldots ,l\}\), but there exists a \(M^\prime \subseteq N\) such that \(|M^\prime |=n-k+l+1\) and \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^a}) > l+1\). So consider the case where \(M^\prime = M \cup \{i\}\). Now consider a coalition \(S \subseteq M\), such that \(|S| = Q({\mathcal {F}}_{M,{\mathcal {I}}^a})\). As \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^a}) > l+1\), it follows that \(S \cup \{i\} \notin {\mathcal {F}}_{M^\prime ,{\mathcal {I}}^a}\). Note that \(|N {\setminus } M^\prime | = k - l - 1\) and \(|(N {\setminus } M^\prime ) \cup \{i\}| = k - l\). As \(Q({\mathcal {I}}^a)=k\), it follows that \(N {\setminus } M^\prime \notin Q({\mathcal {I}}^a)\) and \((N {\setminus } M^\prime ) \cup \{i\} \notin Q({\mathcal {I}}^a)\). Then as \({\mathcal {F}}_{{\mathcal {I}}^a}\) is a collection of committees for a with respect to \({\mathcal {I}}^a\), it follows by using property 3 that \(S \notin {\mathcal {F}}_{M^\prime {\setminus } \{i\},{\mathcal {I}}^a} = {\mathcal {F}}_{M,{\mathcal {I}}^a}\). This however contradicts anonymity of \({\mathcal {F}}_{{\mathcal {I}}^a}\) as \(|S| = Q({\mathcal {F}}_{M,{\mathcal {I}}^a})\). Hence the proof of statement 2.3 is concluded by induction.

Next, we prove statement 2.4. So consider \(M,M'\subseteq N\) such that \(|M'|=|M|-1> n-k\). In view of statement 2.2, without loss of generality, it can be assumed that \(M = M' \cup \{i\}\). Now suppose for contradiction that

  • Case 1 : either \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a}) < Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\),

  • Case 2 : or \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a}) - 1 > Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\).

In case 1, there exists \(S \subseteq M\) such that \(S \in {\mathcal {F}}_{M,{\mathcal {I}}^a}\) and \(|S| = Q({\mathcal {F}}_{M,{\mathcal {I}}^a})\). Now if \(S = M\), then we have a contradiction to \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a}) < Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\) as \(|M| \ge |S^\prime |\) for any \(S' \subseteq M'\). So we have \(S \subsetneq M\). Then it follows that there exists \(S^\star \subsetneq M\) such that \(|S^\star | = |S|\) and \(S^\star \subseteq M^\prime \). As \({\mathcal {F}}_{{\mathcal {I}}^a}\) is a collection of anonymous committees for a with respect to \({\mathcal {I}}^a\), it follows that \(S^\star \in {\mathcal {F}}_{M,{\mathcal {I}}^a}\). Note that as \(S^\star \subseteq M'\), it follows that \(i \notin S^\star \). Also as \(|M|-1> n-k\), it follows that \(|(N {\setminus } M) \cup \{i\}| < k\). As \(Q({\mathcal {I}}^a) = k\), it follows that \((N {\setminus } M) \cup \{i\} \notin {\mathcal {I}}^a\). Then as \({\mathcal {F}}_{{\mathcal {I}}^a}\) is a collection of committees for a with respect to \({\mathcal {I}}^a\), it follows by using property 2 that \(S^\star \in {\mathcal {F}}_{M {\setminus } \{i\},{\mathcal {I}}^a} = {\mathcal {F}}_{M',{\mathcal {I}}^a}\). This constitutes a contradiction with the definition of Q as \(|S^\star | < Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\).

In case 2, there exists \(S \subseteq M'\) such that \(|S| = Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\). Note that if \(S = M'\), it follows from case 2 that \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a}) > |M'| + 1\). This is a contradiction as for all \(S \subseteq M\), we have \(|S| \le |M| = |M'| + 1\). Now consider the set \(S \cup \{i\} \subsetneq M\). Note that \(|S \cup \{i\}| = Q({\mathcal {F}}_{M',{\mathcal {I}}^a}) + 1\). As \(Q({\mathcal {F}}_{M,{\mathcal {I}}^a}) > Q({\mathcal {F}}_{M',{\mathcal {I}}^a}) + 1\), from the definition of Q, it follows that \(S \cup \{i\} \notin {\mathcal {F}}_{M,{\mathcal {I}}^a}\). Also as \(|M|-1> n-k\), it follows that \(|(N {\setminus } M) \cup \{i\}| < k\) and \(|(N {\setminus } M)|< k - 1 < k\). As \(Q({\mathcal {I}}^a) = k\), it follows that \((N {\setminus } M) \cup \{i\} \notin {\mathcal {I}}^a\) and \((N {\setminus } M) \notin {\mathcal {I}}^a\). Then as \({\mathcal {F}}_{{\mathcal {I}}^a}\) is a collection of committees for a with respect to \({\mathcal {I}}^a\), it follows by using property 3 that \(S \notin {\mathcal {F}}_{M {\setminus } \{i\},{\mathcal {I}}^a} = {\mathcal {F}}_{M',{\mathcal {I}}^a}\). This constitutes a contradiction with the anonymity property of \({\mathcal {F}}_{M',{\mathcal {I}}^a}\) as \(|S| = Q({\mathcal {F}}_{M',{\mathcal {I}}^a})\). This completes the proof of statement 2.4 and concludes the proof of Lemma 3. \(\square \)

Observation 1

Given a GVAC rule \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}\), let \(k = Q({\mathcal {I}}^a)\) and \(x_l = Q({\mathcal {F}}_{M, {\mathcal {I}}^a})\), where \(|M| = n - k + l\) for any \(l \in \{1, 2, \ldots , k\}\). Then it follows from Lemma 3 that \(f^{{\mathcal {I}}^a}_{{\mathcal {F}}_{{\mathcal {I}}^a}}(R) = f^{k, x}_a(R)\) for all \(R \in {\mathcal {R}}^N\).

Lemma 4

For the GVAC rule \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}\), we have the following.

  1. 1.

    \(1 \le Q({\mathcal {I}}^b)=k\le n\).

  2. 2.

    \({\mathcal {F}}_{M,{\mathcal {I}}^b}\) satisfies following conditions:

    1. 2.1

      For all \(M\subseteq N\), \(|M|\le n-k\) if and only if \({\mathcal {F}}_{M,{\mathcal {I}}^b}=\emptyset \)

    2. 2.2

      For all \(M,M'\subseteq N\) such that \(|M|=|M'|> n-k\), \(Q({\mathcal {F}}_{M,{\mathcal {I}}^b})=Q({\mathcal {F}}_{M',{\mathcal {I}}^b})\) and \(Q({\mathcal {F}}_{M,{\mathcal {I}}^b}) \ne \emptyset \) and \(Q({\mathcal {F}}_{M',{\mathcal {I}}^b}) \ne \emptyset \).

    3. 2.3

      For all \(M\subseteq N\) such that \(|M|=n-k+l\) where \(l\in \{1,\ldots ,k\}\), we have \(Q({\mathcal {F}}_{M,{\mathcal {I}}^b})\in \{n-k+1,\ldots ,n-k+l\}\)

    4. 2.4

      For all \(M,M'\subseteq N\) such that \(|M'|=|M-1|> n-k\), \(Q({\mathcal {F}}_{M,{\mathcal {I}}^d})\ge Q({\mathcal {F}}_{M',{\mathcal {I}}^d})\ge Q({\mathcal {F}}_{M,{\mathcal {I}}^d}) - 1\).

Proof

In view of Lemma 3, we will only show the proof of statement 2.3. So consider \(M\subseteq N\) such that \(|M|=n-k+l\) where \(l\in \{1,\ldots ,k\}\). First consider the case, where \(l = 1\). In this case, we have to show that \({\mathcal {F}}_{M,{\mathcal {I}}^b} = \{M\}\). As \(|M|=n-k+1\), it follows that \(|N {\setminus } M| = k - 1\). As \(Q({\mathcal {I}}^b)=k\), it follows, from the definition of Q, that \(N {\setminus } M \notin {\mathcal {I}}^a\). Now for every \(i \in M\), consider the coalitions \((N {\setminus } M) \cup \{i\}\). Note that \(|(N {\setminus } M) \cup \{i\}| = k\). As \({\mathcal {I}}^b\) is an anonymous committee for indifference default b, it follows that \((N {\setminus } M) \cup \{i\} \in {\mathcal {I}}^b\). Then as \({\mathcal {F}}_{{\mathcal {I}}^a}\) is a collection of committees for a with respect to \({\mathcal {I}}^b\), it follows by using property 1 that if \(S \in {\mathcal {F}}_{M,{\mathcal {I}}^a}\) then \(i \in S\). As this is true for all \(i \in M\), it follows that \({\mathcal {F}}_{M,{\mathcal {I}}^b} = \{M\}\). Now suppose that for all \(M\subseteq N\) such that \(|M|=n-k+l\) where \(l\in \{1,\ldots ,k-1\}\), we have \(Q({\mathcal {F}}_{M,{\mathcal {I}}^b})\in \{n-k+1,\ldots ,n-k+l\}\), but there exists a \(M^\prime \subseteq N\) such that \(|M^\prime |=n-k+l+1\) and either \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}) > n-k+l+1\), or \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}) < n-k+1\). Note that \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}) > n-k+l+1\) implies for all \(S \in {\mathcal {F}}_{M^\prime ,{\mathcal {I}}^a}\), we have \(|S| > n-k+l+1\). This is a contradiction as \(S \subseteq M^\prime \) and \(|M^\prime |=n-k+l+1\). So assume that \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}) < n-k+1\). Now consider an \(M \subseteq N\) such that \(M^\prime = M \cup \{i\}\) for some \(i \in N {\setminus } M\). Then it follows that \(|M|=n-k+l\). So \(Q({\mathcal {F}}_{M,{\mathcal {I}}^b})\in \{n-k+1,\ldots ,n-k+l\}\). Now consider a \(S \subsetneq M\) such that \(|S| = n-k\). As \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}) < n-k+1\); i.e.; \(Q({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}) \le n-k\), monotonicity and anonymity property of \({\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}\) implies that \(S \in {\mathcal {F}}_{M^\prime ,{\mathcal {I}}^b}\). Note that \(i \notin S\). Also \(|(N {\setminus } M^\prime ) \cup \{i\}| = k-l < k\). Then from the definition of Q, it follows that \((N {\setminus } M^\prime ) \cup \{i\} \notin {\mathcal {I}}^b\). As \({\mathcal {F}}_{{\mathcal {I}}^a}\) is a collection of committees for a with respect to \({\mathcal {I}}^b\), it follows by using property 2 that \(S \in {\mathcal {F}}_{M^\prime {\setminus } \{i\},{\mathcal {I}}^b} = {\mathcal {F}}_{M,{\mathcal {I}}^b}\). This contradicts the fact that \(Q({\mathcal {F}}_{M,{\mathcal {I}}^b})\in \{n-k+1,\ldots ,n-k+l\}\) as \(|S| = n-k\). Hence the proof of statement 2.3 is concluded by induction.

Observation 2

Given a GVAC rule \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}\), let \(k = Q({\mathcal {I}}^b)\) and \(y_l = Q({\mathcal {F}}_{M, {\mathcal {I}}^a})\), where \(|M| = n - k + l\) for any \(l \in \{1, 2, \ldots , k\}\). Then it follows from Lemma 4 that \(f^{{\mathcal {I}}^b}_{{\mathcal {F}}_{{\mathcal {I}}^b}}(R) = f^{k, y}_b(R)\) for all \(R \in {\mathcal {R}}^N\).

The proof of Proposition concludes by Observations 1 and 2. \(\square \)

Proof of Theorem 2

In view of Propositions 4 and 5, to prove Theorem 2, it is sufficient to show that the quota rule with indifference default a and the quota rule with indifference default b are strategy-proof, onto and anonymous. First we show that the quota rule with indifference default a (\(f^{k, x}_a\)) is strategy-proof, anonymous and onto. The fact that \(f^{k, x}_a\) is onto and anonymous follows directly from the definition of \(f^{k, x}_a\). Next, in view of Lemma 1, as \(f^{k, x}_a\) is onto, it is sufficient to show that \(f^{k, x}_a\) satisfies weak strategy-proofness. So consider a profile \(R \in {\mathcal {R}}^N\) and an \(i-\)deviation \(R^\prime \in {\mathcal {R}}^N\) of R. We need to show \(f^{k, x}_a(R) R_i f^{k, x}_a(R^\prime )\) in the following cases.

  • \(a P_i b\) and \(a I^\prime _i b\) : In this case, suppose \(f^{k, x}_a(R) = a\). then it follows that \(f^{k, x}_a(R) R_i f^{k, x}_a(R^\prime )\). So suppose that \(f^{k, x}_a(R) = b\). This implies that \(|N_A(R)| < k\). Also in this case we have \(|N_a(R) \cup N_b(R)| = n-k+l\), for some \(l \in \{2, 3, \ldots , k\}\). Otherwise, \(|N_a(R) \cup N_b(R)| = n-k+1\) and \(|N_a(R)| \ge 1 = x_1\) (due to the fact that \(a P_i b\)) would imply that \(f^{k, x}_a(R) = a\), which contradict our assumption that \(f^{k, x}_a(R) = b\). Also we have \(|N_a(R)| < x_l\). Now \(|N_a(R) \cup N_b(R)| = n-k+l\), for some \(l \in \{2, 3, \ldots , k\}\) implies that \(|N_A(R)| \le k-2\). So it follows that \(|N_A(R^\prime )| \le k-1 < k\). Also \(|N_a(R^\prime ) \cup N_b(R^\prime )| = n-k+l-1\). Note that \(x_l - 1 \le x_{l-1} \le x_l\). Also \(|N_a(R^\prime )| = |N_a(R)| - 1\). Now \(|N_a(R)| < x_l\) implies \(|N_a(R^\prime )| < x_l - 1 \le x_{l - 1}\). This shows that \(f^{k, x}_a(R^\prime ) = b\) and we can conclude that \(f^{k, x}_a(R) R_i f^{k, x}_a(R^\prime )\).

  • \(b P_i a\) and \(a I^\prime _i b\) : In this case, suppose \(f^{k, x}_a(R) = b\). then it follows that \(f^{k, x}_a(R) R_i f^{k, x}_a(R^\prime )\). So suppose that \(f^{k, x}_a(R) = a\). Now if \(|N_A(R)| \ge k-1\), then it follows that \(|N_A(R^\prime )| \ge k\). This implies that \(f^{k, x}_a(R^\prime ) = a\). So suppose that \(|N_A(R)| < k-1\) and \(|N_A(R^\prime )| < k\). In this case we have \(|N_a(R) \cup N_b(R)| = n-k+l\), for some \(l \in \{2, 3, \ldots , k\}\) Also we have \(|N_a(R)| \ge x_l\). Also \(|N_a(R^\prime ) \cup N_b(R^\prime )| = n-k+l-1\). Note that \(x_l - 1 \le x_{l-1} \le x_l\). Also \(|N_a(R^\prime )| = |N_a(R)|\). Now \(|N_a(R)| \ge x_l\) and \(x_{l-1} \le x_l\) implies \(|N_a(R^\prime )| \ge x_{l - 1}\). This shows that \(f^{k, x}_a(R^\prime ) = a\) and we can conclude that \(f^{k, x}_a(R) R_i f^{k, x}_a(R^\prime )\).

Combining these cases, it follows that \(f^{k, x}_a\) satisfies weak strategy-proofness. Hence as \(f^{k, x}_a\) is onto and Lemma 1 implies that \(f^{k, x}_a\) is strategy-proof. In a similar way, it can be shown that \(f^{k, y}_b\) is anonymous, onto and strategy-proof. This concludes the proof of Theorem 2. \(\square \)

The Proof of Proposition 2

Proof

Only if part. Let \(f_a^{k, x}\) be a quota rule with indifference default a and it satisfies WDPR. Therefore, the length of x is either (i) \(k=n\) or (ii) \(k\in \{1,2,\ldots ,n-1\}\).

First we assume that \(k=n\). If \(x_n=1\) or n then we are done. We assume for contradiction that \(x_n\in \{2,3,\ldots ,n-1\}\). Let R be a preference profile such that \(N_{A}(R)=\emptyset \) and \(N_a(R)=x_n\). Since \(f_a^{k, x}\) be a quota rule with indifference default a, \(f_a^{k, x}(R)=a\). Let \(R'\) be a preference profile such that \(N_{A}(R')=\emptyset \) and \(N_a(R')=x_n-1\). Note that \(N_a(R)\), \(N_b(R)\), \(N_a(R')\), \(N_b(R')\)\(\ne \)\(\emptyset \). Therefore, by Lemma 2\(f_a^{k, x}(R)=f_a^{k, x}(R')\). However, since \(f_a^{k, x}\) be a quota rule with indifference default a, \(f_a^{k, x}(R')=b\) - a contradiction. Therefore \(x_n=1\) or n, which in turn imply that \(x=(x_1,\ldots ,x_n)\in \{(1,1,\ldots ,1), (1,2,\ldots ,n)\}\).

Finally we assume that \(k\in \{1,2,\ldots ,n-1\}\). Note that if we can show \(x_i=x_{i+1}\) for all \(i\in \{1,2,\ldots ,k-1\}\), then we are done. If \(k=1\), we are done trivially. Therefore we assume that \(k>1\). We assume for contradiction that there exists \(i\in \{1,2,\ldots ,k-1\}\) such that \(x_i\ne x_{i+1}\). Let \(i'\) be he minimum among all \(i\in \{1,2,\ldots ,k-1\}\) such that \(x_i\ne x_{i+1}\). Note that \(x_{i'}=1\) and \(x_{i'+1}=2\). Let R and \(R'\) be preference profiles such that \( |N_a(R) \cup N_b(R)| = |N_a(R') \cup N_b(R')| = n - k + i'+1 \). Moreover we assume that \(|N_a(R)|= 2\) and \(|N_a(R')|=1\). Since \(N_a(R)\), \(N_b(R)\), \(N_a(R')\), \(N_b(R')\)\(\ne \)\(\emptyset \); by Lemma 2\(f_a^{k, x}(R)=f_a^{k, x}(R')\). However, since \(f_a^{k, x}\) be a quota rule with indifference default a, \(f_a^{k, x}(R)=a\ne b=f_a^{k, x}(R')\) - a contradiction. Therefore, \(x_i=x_{i+1}\) for all \(i\in \{1,2,\ldots ,k-1\}\), which in turn imply that \(x=(x_1,\ldots ,x_n)=(1,1,\ldots ,1)\).

If part. We first prove the following claim.

Claim 5

Let \(f:{\mathcal {R}}^n\longrightarrow A\) select the same alternative in each disagreement profile. Then f satisfies WDPR.

Proof

Let \(R\in {\mathcal {R}}^n\), \(i\in N\) and \(R'_i\in {\mathcal {R}}\). If both R and \((R'_i,R_{-i})\) are disagreement profile then \(f(R)=f(R'_i,R_{-i})\). Suppose this is not the case. Then either (i) for each \(j\in N{\setminus } \{i\}\), we have \(f(R)R_jf(R'_i,R_{-i})\) or (ii) for each \(j\in N{\setminus } \{i\}\), we have \(f(R'_i,R_{-i})R_jf(R)\). In either case WDPR is satisfied. \(\square \)

Let \(f_a^{k, x}:{\mathcal {R}}^n\longrightarrow A\) be a quota rule with indifference default a. If x is a vector of natural numbers of length n and \(x=(x_1,\ldots ,x_n)=(1,1,\ldots ,1)\), then \(f_a^{k, x}\) selects a in each disagreement profile. If x is a vector of natural numbers of length n and \(x=(x_1,\ldots ,x_n)=(1,2,\ldots ,n)\), then \(f_a^{k, x}\) selects b in each disagreement profile. If x is a vector of natural numbers of length k, \(k\in \{1,2,\ldots ,n-1\}\) and \(x=(x_1,\ldots ,x_k)=(1,1,\ldots ,1)\), then \(f_a^{k, x}\) selects a in each disagreement profile. Therefore, by Claim 5, all these rules satisfy WDPR. \(\square \)

The Proof of Proposition 3

Proof

Only if part. Let \(f_b^{k, y}\) be a quota rule with indifference default b and it satisfies WDPR. Therefore, the length of y is either (i) \(k=n\) or (ii) \(k\in \{1,2,\ldots ,n-1\}\).

First we assume that \(k=n\). If \(Y_n=1\) or n then we are done. We assume for contradiction that \(y_n\in \{2,3,\ldots ,n-1\}\). Let R be a preference profile such that \(N_{A}(R)=\emptyset \) and \(N_a(R)=y_n\). Since \(f_b^{k, y}\) be a quota rule with indifference default b, \(f_b^{k, y}(R)=a\). Let \(R'\) be a preference profile such that \(N_{A}(R')=\emptyset \) and \(N_a(R')=y_n-1\). Note that \(N_a(R)\), \(N_b(R)\), \(N_a(R')\), \(N_b(R')\)\(\ne \)\(\emptyset \). Therefore, by Lemma 2\(f_b^{k, y}(R)=f_b^{k, y}(R')\). However, since \(f_b^{k, y}\) be a quota rule with indifference default b, \(f_b^{k, y}(R')=b\) - a contradiction. Therefore \(y_n=1\) or n, which in turn imply that \(y=(y_1,\ldots ,y_n)\in \{(1,1,\ldots ,1), (1,2,\ldots ,n)\}\).

Finally we assume that \(k\in \{1,2,\ldots ,n-1\}\). Note that if we can show \(y_i\ne y_{i+1}\) for all \(i\in \{1,2,\ldots ,k-1\}\), then we are done. If \(k=1\), we are done trivially. Therefore we assume that \(k>1\). We assume for contradiction that there exists \(i\in \{1,2,\ldots ,k-1\}\) such that \(y_i= y_{i+1}\). Let \(i'\) be he minimum among all \(i\in \{1,2,\ldots ,k-1\}\) such that \(y_i= y_{i+1}\). Therefore \(y_{i'}= y_{i'+1}=n-k+i'\). Let R and \(R'\) be preference profiles such that \( |N_a(R) \cup N_b(R)| = |N_a(R') \cup N_b(R')| = n - k + i'+1 \). Moreover we assume that \(|N_a(R)|= n-k+i'\) and \(|N_a(R')|=n-k+i'-1\). Since \(N_a(R)\), \(N_b(R)\), \(N_a(R')\), \(N_b(R')\)\(\ne \)\(\emptyset \); by Lemma 2\(f_b^{k, y}(R)=f_b^{k, y}(R')\). However, since \(f_b^{k, y}\) be a quota rule with indifference default b, \(f_b^{k, y}(R)=a\ne b=f_b^{k, y}(R')\) - a contradiction. Therefore, \(y_i\ne y_{i+1}\) for all \(i\in \{1,2,\ldots ,k-1\}\), which in turn imply that \(y=(y_1,\ldots ,y_k)=(n-k+1,n-k+2,\ldots ,n)\).

If part. Let \(f_b^{k, y}:{\mathcal {R}}^n\longrightarrow A\) be a quota rule with indifference default b. If y is a vector of natural numbers of length n and \(y=(y_1,\ldots ,y_n)=(1,1,\ldots ,1)\), then \(f_b^{k, y}\) selects a in each disagreement profile. If y is a vector of natural numbers of length n and \(y=(y_1,\ldots ,y_n)=(1,2,\ldots ,n)\), then \(f_b^{k, y}\) selects b in each disagreement profile. If y is a vector of natural numbers of length k, \(k\in \{1,2,\ldots ,n-1\}\) and \(y=(y_1,\ldots ,y_k)=(n-k+1,n-k+2,\ldots ,n)\), then \(f_b^{k, y}\) selects b in each disagreement profile. Therefore, by Claim 5, all these rules satisfy WDPR. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, A., Pramanik, A. On strategy-proof social choice between two alternatives. Soc Choice Welf 54, 581–607 (2020). https://doi.org/10.1007/s00355-019-01220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00355-019-01220-7

Navigation