Skip to main content
Log in

Heat release and UV–Vis radiation in non-premixed hydrogen–oxygen flames

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The relationship between the volumetric heat release rate and radiation of non-premixed hydrogen–oxygen flames at atmospheric and elevated pressure is investigated. Both the radiation of the excited hydroxyl radical (\({\hbox {OH}^*}\)) and the continuous blue radiation are considered. To physically interpret radiation and heat release, the phenomena are first analyzed within laminar flames following a hybrid approach: a pressurized jet flame experiment is set up to correctly measure the \({\hbox {OH}^*}\) and blue radiation. The heat release rate is obtained from a complementary CFD simulation. Radiation and heat release are clearly uncorrelated for changes in pressure. Spatially, radiation and heat release occur at separate locations. To further scrutinize the laminar flame structure, non-premixed counterflow flame simulations are performed. By considering statistical ensembles of flamelets, these findings are transferred onto turbulent flames. As before, no general direct proportionality between radiation and heat release rate is observed because of flame straining. A technique for correcting these effects is applied, and its potential is evaluated. The impact of self-absorption of \({\hbox {OH}^*}\) radiation at elevated pressures on its interpretation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The infrared radiation of water vapor and OH is not considered because of its interference with thermal background radiation, self-absorption, and measurement difficulty.

  2. The latter assumption was recently justified numerically by Hossain and Nakamura (2014).

Abbreviations

a :

Strain rate (1/s)

c :

Speed of light (m/s)

\(c_f\) :

Proportionality constant (W/kmol)

\(g_{m}^{\ominus }\) :

Standard-state molar Gibbs energy (J/kmol)

h :

Planck constant (J s)

\(k_\mathrm{B}\) :

Boltzmann constant (J/K)

L :

Radiance (W/m2 sr−1)

N :

Number of flamelets

p :

Pressure (bar)

\(\dot{q}\) :

Volumetric heat release rate (W/m3)

\(R_m\) :

Gas constant (J/kmol K−1)

T :

Temperature (K)

\(X_{\mathrm{M}}\) :

Mole fraction of molecule M

z :

Coordinate (m)

\(\delta\) :

Flame thickness (m)

\(\lambda\) :

Wavelength (m)

[M]:

Concentration of molecule M (kmol/m3)

References

  • ANSYS (2011) ANSYS FLUENT Theory Guide. ANSYS, INC., release 14.0 edn

  • Ayoola B, Balachandran R, Frank J, Mastorakos E, Kaminski C (2006) Spatially resolved heat release rate measurements in turbulent premixed flames. Combust Flame 144(1–2):1–16. doi:10.1016/j.combustflame.2005.06.005

    Article  Google Scholar 

  • Bedard MJ, Sardeshmukh SV, Fuller T, Anderson WE, Tanabe M (2014) Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor. In: 50th AIAA/ASME/SAE/ASEE joint propulsion conference, American Institute of Aeronautics and Astronautics. doi:10.2514/6.2014-3660

  • Burcat A, Ruscic B (2005) Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Techinical report, ANL-05/20, Argonne National Laboratory

  • Burrows MC (1965) Radiation processes related to oxygen–hydrogen combustion at high pressures. Symp Combust 10(1):207–215. doi:10.1016/S0082-0784(65)80165-5 (tenth symposium (international) on combustion)

  • Burrows MC, Povinelli LA (1962) Emission spectra from high-pressure hydrogen–oxygen combustion. Technical report, NASA-TN-D-1305, NASA Lewis Research Center

  • Burrows MC, Razner R (1964) Relation of emitted ultraviolet radiation to combustion of hydrogen and oxygen at 20 atmospheres. Technical report, NASA-TN-D-2548, NASA Glenn Research Center

  • Clark TP, Bittker DA (1954) A study of the radiation from laminar and turbulent open propane-air flames as a function of flame area, equivalence ratio, and fuel flow rate. Technical report, RM E54F29, NASA Lewis Flight Propulsion Laboratory

  • Daguse T, Croonenbroek T, Rolon JC, Darabiha N, Soufiani A (1996) Study of radiative effects on laminar counterflow H2/O2N2 diffusion flames. Combust Flame 106(3):271–287. doi:10.1016/0010-2180(95)00251-0

    Article  Google Scholar 

  • Diederichsen J, Wolfhard HG (1956) Spectrographic examination of gaseous flames at high pressure. Proc R Soc Lond A Math Phys Sci 236(1204):89–103. doi:10.1098/rspa.1956.0114

    Article  Google Scholar 

  • Fiala T (2015) Radiation from high pressure hydrogen–oxygen flames and its use in assessing rocket combustion instability. PhD thesis, Technische Universität München

  • Fiala T, Sattelmayer T (2013a) Non-premixed counterflow flame simulations: scaling rules for fast batch simulations. In: Proceedings of the European combustion meeting, pp 1–71

  • Fiala T, Sattelmayer T (2013b) A posteriori computation of OH* radiation from numerical simulations in rocket combustion chambers. In: 5th European conference for aeronautics and space sciences (EUCASS), Munich. doi:10.13140/2.1.1852.0966

  • Fiala T, Sattelmayer T (2014) Nonpremixed counterflow flames: scaling rules for batch simulations. J Combust. doi:10.1155/2014/484372

    MATH  Google Scholar 

  • Fiala T, Kathan R, Sattelmayer T (2011) Effective stability analysis of liquid rocket combustion chambers: experimental investigation of damped admittances. In: Proceedings of the 62nd international astronautical congress, international astronautical federation, IAC11-C4.3.11. doi:10.13140/2.1.2866.6243

  • Fiala T, Nettinger M, Rieger F, Kumar A, Sattelmayer T (2014) Emission and absorption measurement in enclosed round jet flames. In: 16th international symposium on flow visualization, Okinawa, Japan, 1138. doi:10.13140/2.1.3424.9609

  • Gardiner WC, Morinaga K, Ripley DL, Takeyama T (1969) Shock-tube study of oh (sigma–pi) luminescence. Phys Fluids 12(5):I-120–I-124. doi:10.1063/1.1692590

    Article  Google Scholar 

  • Gaydon AG, Wolfhard HG (1952) The spectrum-line reversal method of measuring flame temperature. Proc Phys Soc Sect A 65(1):19. doi:10.1088/0370-1298/65/1/303

    Article  Google Scholar 

  • Goodwin DG, Moffat HK, Speth RL (2014) Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://cantera.org, version 2.2.0

  • Grcar JF, Day MS, Bell JB (2003) Conditional and opposed reaction path diagrams for the analysis of fluid-chemistry interactions. Report LBNL-52164, Lawrence Berkeley National Laboratory

  • Gröning S, Oschwald M, Sattelmayer T (2012) Selbst erregte tangentiale Moden in einer Raketenbrennkammer unter repräsentativen Bedingungen. In: Proceedings 61. Deutscher Luft- und Raumfahrtkongress, Berlin, Deutschland

  • Hardalupas Y, Orain M (2004) Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust Flame 139(3):188–207. doi:10.1016/j.combustflame.2004.08.003

    Article  Google Scholar 

  • Hardalupas Y, Panoutsos C, Taylor A (2010) Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor. Exp Fluids 49(4):883–909. doi:10.1007/s00348-010-0915-z

    Article  Google Scholar 

  • Hidaka Y, Takahashi S, Kawano H, Suga M, Gardiner WC (1982) Shock-tube measurement of the rate constant for excited hydroxyl(A2.SIGMA.+) formation in the hydrogen–oxygen reaction. J Phys Chem 86(8):1429–1433. doi:10.1021/j100397a043

    Article  Google Scholar 

  • Hossain A, Nakamura Y (2014) A numerical study on the ability to predict the heat release rate using CH* chemiluminescence in non-sooting counterflow diffusion flames. Combust Flame 161(1):162–172. doi:10.1016/j.combustflame.2013.08.021

    Article  Google Scholar 

  • Kathrotia T, Fikri M, Bozkurt M, Hartmann M, Riedel U, Schulz C (2010) Study of the H+O+M reaction forming OH*: kinetics of OH* chemiluminescence in hydrogen combustion systems. Combust Flame 157(7):1261–1273. doi:10.1016/j.combustflame.2010.04.003

    Article  Google Scholar 

  • Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow. Wiley-Interscience, London

    Book  Google Scholar 

  • Koike T, Morinaga K (1982) Further studies of the rate constant for chemical excitation of OH in shock waves. Bull Chem Soc Jpn 55(1):52–54. doi:10.1246/bcsj.55.52

    Article  Google Scholar 

  • Lauer M (2011) Determination of the heat release distribution in turbulent flames by chemiluminescence imaging. Dissertation. Technische Universität München,

  • Lauer M, Zellhuber M, Aul CJ, Sattelmayer T (2011) Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence. In: Proceedings of ASME Turbo Expo 2011, GT2011-45105

  • Law CK (2006) Combustion physics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Leo MD, Saveliev A, Kennedy LA, Zelepouga SA (2007) OH and CH luminescence in opposed flow methane oxy-flames. Combust Flame 149(4):435–447. doi:10.1016/j.combustflame.2007.01.008

    Article  Google Scholar 

  • Luque J, Crosley DR (1999) Lifbase 1.9. SRI International

  • Najm HN, Paul PH, Mueller CJ, Wyckoff PS (1998) On the adequacy of certain experimental observables as measurements of flame burning rate. Combust Flame 113(3):312–332. doi:10.1016/S0010-2180(97)00209-5

    Article  Google Scholar 

  • Ó Conaire M, Curran HJ, Simmie JM, Pitz WJ, Westbrook CK (2004) A comprehensive modeling study of hydrogen oxidation. Int J Chem Kinet 36(11):603–622. doi:10.1002/kin.20036

    Article  Google Scholar 

  • Panoutsos C, Hardalupas Y, Taylor A (2009) Numerical evaluation of equivalence ratio measurement using OH* and CH* chemiluminescence in premixed and non-premixed methane-air flames. Combust Flame 156(2):273–291. doi:10.1016/j.combustflame.2008.11.008

    Article  Google Scholar 

  • Peters N (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog Energy Combust Sci 10(3):319–339. doi:10.1016/0360-1285(84)90114-X

    Article  Google Scholar 

  • Peters N (2004) Turbulent combustion. Cambridge University Press, Cambridge

    Google Scholar 

  • Poinsot T, Veynante D (2005) Theoretical and numerical combustion, 2nd edn. R.T. Edwards, Inc., Philadelphia

    Google Scholar 

  • Pons L, Darabiha N, Candel S (2007) Pressure effects on non-premixed strained flames. In: Proceedings of the European combustion meeting

  • Ribert G, Zong N, Yang V, Pons L, Darabiha N, Candel S (2008) Counterflow diffusion flames of general fluids: oxygen/hydrogen mixtures. Combust Flame 154(3):319–330. doi:10.1016/j.combustflame.2008.04.023

    Article  Google Scholar 

  • Rothman L, Gordon I, Barbe A, Benner D, Bernath P, Birk M, Boudon V, Brown L, Campargue A, Champion JP, Chance K, Coudert L, Dana V, Devi V, Fally S, Flaud JM, Gamache R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W, Mandin JY, Massie S, Mikhailenko S, Miller C, Moazzen-Ahmadi N, Naumenko O, Nikitin A, Orphal J, Perevalov V, Perrin A, Predoi-Cross A, Rinsland C, Rotger M, Šimečková M, Smith M, Sung K, Tashkun S, Tennyson J, Toth R, Vandaele A, Auwera JV (2009) The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110(9–10):533–572. doi:10.1016/j.jqsrt.2009.02.013

    Article  Google Scholar 

  • Sullivan N, Jensen A, Glarborg P, Day MS, Grcar JF, Bell JB, Pope CJ, Kee RJ (2002) Ammonia conversion and NOx formation in laminar coflowing nonpremixed methane–air flames. Combust Flame 131(3):285–298. doi:10.1016/S0010-2180(02)00413-3

    Article  Google Scholar 

  • Turns SR (2000) An introduction to combustion: concepts and applications. Mechanical engineering series. McGraw Hill, Boston

    Google Scholar 

  • Vanpee M, Mainiero R (1979) The spectral distribution of the blue hydrogen flame continuum and its origin in hydrogen–nitric oxide flames. Combust Flame 34:219–230. doi:10.1016/0010-2180(79)90097-X

    Article  Google Scholar 

  • Wolfhard HG, Parker WG (1952) A spectroscopic investigation into the structure of diffusion flames. Proc Phys Soc Sect A 65(1):2. doi:10.1088/0370-1298/65/1/302

    Article  Google Scholar 

  • Yang V, Anderson WE (eds) (1995) Liquid rocket engine combustion instability, progress in astronautics and aeronautics, vol 169. AIAA

  • Yeung P, Girimaji S, Pope S (1990) Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets. Combust Flame 79(3–4):340–365. doi:10.1016/0010-2180(90)90145-H

    Article  Google Scholar 

  • Yoo SW, Law CK, Tse SD (2002) Chemiluminescent OH* and CH* flame structure and aerodynamic scaling of weakly buoyant, nearly spherical diffusion flames. Proc Combust Inst 29:1663–1670

    Article  Google Scholar 

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (DFG) in the framework of Sonderforschungsbereich Transregio 40 provided financial support for this project. We thank our project partners M. Oschwald and S. Gröning from DLR Lampoldshausen for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Fiala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiala, T., Sattelmayer, T. Heat release and UV–Vis radiation in non-premixed hydrogen–oxygen flames. Exp Fluids 56, 144 (2015). https://doi.org/10.1007/s00348-015-2013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2013-8

Keywords

Navigation