Skip to main content
Log in

Avian wing geometry and kinematics of a free-flying barn owl in flapping flight

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper presents results of high-resolution three-dimensional wing shape measurements performed on free-flying barn owls in flapping flight. The applied measurement technique is introduced together with a moving camera set-up, allowing for an investigation of the free flapping flight of birds with high spatial and temporal resolution. Based on the three-dimensional surface data, a methodology for parameterizing the wing profile along with wing kinematics during flapping flight has been developed. This allowed a description of the spanwise varying kinematics and aerodynamic parameters (e.g. effective angles of attack, camber, thickness) of the wing in dependence on the flapping phase. The results are discussed in detail using the data of a single flight, whereas a comparison of some kinematic parameters obtained from different flights is given too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72

    Article  MATH  MathSciNet  Google Scholar 

  • Bachmann T. (2010) Anatomical, morphometrical and biomechanical studies of barn owls’ and pigeons’ wings. Dissertation, RWTH Aachen University

  • Biesel W, Butz H, Nachtigall W (1985) Erste Messung der Flügelgeometrie bei frei gleitfliegenden Haustauben (Columba livia var. domestica) unter Benutzung neu ausgearbeiteter Verfahren der Windkanaltechnik und der Stereophotogrammetrie. Biona Report 3:139–160

    Google Scholar 

  • Bilo D (1971) Flugbiophysik von Kleinvögeln. Zeitschrift für vergleichende Physiologie 71:382–454

    Article  Google Scholar 

  • Bookstein FL (1989) Principal warps: thin—plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585

    Article  MATH  Google Scholar 

  • Carruthers AC, Walker SM, Thomas GK, Taylor GK (2010) Aerodynamics of aerofoil sections measured on a free flying bird. J Aerosp Eng 224(8):855–864

    Google Scholar 

  • DeLaurier JD, Harris JM (1982) Experimental study of oscillating-wing propulsion. AIAA J Aircr 19(5):368–373

    Article  Google Scholar 

  • Doster T, Wolf T, Konrath R (2014) Combined flow and shape measurements of the flapping flight of freely flying barn owls. In: New results in numerical and experimental fluid mechanics IX notes on numerical fluid mechanics and multidisciplinary design 124. Springer international, pp. 661–669

  • Gesemann S (2007) Ein und Mehrkamerakalibrierung. Göttingen: DLR-Institutsbericht IB 224-2007 A 01

  • Heathcote S, Gursul I (2007) Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J 45(5):1066–1079

    Article  Google Scholar 

  • Hubbel T (2006) Untersuchungen zur instationären Aerodynamik an einem vogelähnlichen Flügelschlagmodell. Dissertation, Technischen Hochschule Darmstadt

  • Jähne B (2005) Digitale Bildverarbeitung. Springer, Heidelberg

    Google Scholar 

  • Jones KD, Platzer MF (2014) Flapping-Wing Propelled Micro Air Vehicles. Handbook of unmanned aerial vehicles 1. Springer, Netherlands, pp 1359–1383

    Google Scholar 

  • Kirsty JP, Rosen M, Hedenström A (2001) Flight kinematics of the barn swallow (hirundo rustica) over a wide range of speeds in a wind tunnel. J Exp Biol 204:2741–2750

    Google Scholar 

  • Konrath R, Klinge F, Schröder A, Kompenhans J, Füllekrug U (2004) The projected pattern correlation technique for vibration measurements. 6th international conference on vibration measurements by laser techniques: advances and applications 510, Italy, Ancona

  • Kraus K (2004) Photogrammetrie Bd. 1, Auflage 7. Walter de Gruyter, Berlin

  • LaVision (2006) Software Manual for DaVis 7.1. LaVision GmbH, Göttingen

  • Lewis J (2011) Fast normalized cross correlation. JP-lewis research. http://scribblethink.org/Work/nvisionInterface/nip.html. Accessed 21 Oct 2014

  • Liu T, Kuykendoll K, Rhew R, Jones S (2006) Avian wing geometry and kinematics. AIAA J 44(5):954–963

    Article  Google Scholar 

  • Nachtigall W (1985) Warum die Vögel fliegen. Hamburg Zürich, Rasch und Röhrig

    Google Scholar 

  • Neef MF (2002) Analyse des Schlagfluges durch numerische Strömungsberechnung. ZTL-Forschungsbericht 2002-02, Technische Universität Braunschweig, Institut für Strömungsmechanik

  • Ol MV, Bernal L, Kang C-K, Shyy W (2009) Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp Fluids 46:883–901

    Article  Google Scholar 

  • Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping-wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry: a practical guide. Experimental fluid mechanics. Springer, Berlin

    Book  Google Scholar 

  • Schlichting H, Truckenbrodt E (1967) Aerodynamik des Flugzeugs, vol 1. Springer, Göttingen

    Book  Google Scholar 

  • Send W (1996) Otto lilienthal und der meachnismus des Schwingenfluges. DGLR Jahrbuch 2006 1:161–172

    Google Scholar 

  • Steger C, Ulrich M, Wiedemann C (2008) Machine vision algorithms and applications. WILEY-VCH Verlag, Weinheim

    Google Scholar 

  • Tobalske BW, Dial K (1996) Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J Exp Biol 199:263–280

    Google Scholar 

  • Wolf T, Konrath R, Erlinghagen T, Wagner H (2012) Shape and deformation measurement of free flying birds in flapping flight. Notes on numerical fluid mechanics and multidisciplinary design. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

This investigation was partly funded by the German Science Foundation (DFG) within the priority program SPP-1207, “Nature Inspired Fluid Mechanics”. The authors were also much obliged to the RWTH Aachen University for providing the animals and the infrastructure to perform the tests. The authors would like to thank Thomas Erlinghagen (Institute of Biology II, RWTH Aachen) for his support and training of the birds during the measurement campaign, as well as Thomas Doster and Daniel Kurz for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, T., Konrath, R. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight. Exp Fluids 56, 28 (2015). https://doi.org/10.1007/s00348-015-1898-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1898-6

Keywords

Navigation