Skip to main content
Log in

Measuring the temperature of fluid in a micro-channel using thermochromic liquid crystals

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anna SL, Bontoux N et al (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366

    Article  Google Scholar 

  • Bayraktar T, Pidugu SB (2006) Characterization of liquid flows in microfluidic systems. Int J Heat Mass Transf 49:815–824

    Article  MATH  Google Scholar 

  • Burns MA, Mastrangelo CH et al (1996) Microfabricated structures for integrated DNA analysis. Proc Nat Acad Sci USA 93(11):5556–5561

    Article  Google Scholar 

  • Burns MA, Johnson BN et al (1998) An integrated nanoliter DNA analysis device. Science 282(5388):484–487

    Article  Google Scholar 

  • Chaudhari AM, Woudenberg TM et al (1998) Transient liquid crystal thermometry of microfabricated PCR vessel arrays. J Microelectromech Syst 7(4):345–355

    Article  Google Scholar 

  • Chen JZ, Darhuber AA et al (2004) Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4(5):473–480

    Article  Google Scholar 

  • Dabiri D (2009) Digital particle image thermometry/velocimetry: a review. Exp Fluids 46(2):191–241

    Article  Google Scholar 

  • Fujisawa N, Hashizume Y (2001) An uncertainty analysis of temperature and velocity measured by a liquid crystal visualization technique. Meas Sci Technol 12(8):1235–1242

    Article  Google Scholar 

  • Gendrich CP, Koochesfahani MM et al (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23(5):361–372

    Article  Google Scholar 

  • Hay JL, Hollingsworth DK (1996) A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals. Exp Thermal Fluid Sci 12(1):1–12

    Article  Google Scholar 

  • Hay JL, Hollingsworth DK (1998) Calibration of micro-encapsulated liquid crystals using hue angle and a dimensionless temperature. Exp Thermal Fluid Sci 18(3):251–257

    Article  Google Scholar 

  • Hu H, Koochesfahani MM, Lum C (2006) Molecular tagging thermometry with adjustable temperature sensitivity. Exp Fluids 40(5):753–763

    Article  Google Scholar 

  • Hu H, Jin Z et al (2010) Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques. Meas Sci Technol 21(8):085401, 14 pp

    Google Scholar 

  • Kataoka DE, Troian SM (1999) Patterning liquid flow on the microscopic scale. Nature 402(6763):794–797

    Article  Google Scholar 

  • Kim M, Yoda M (2010) Dual-tracer fluorescence thermometry measurements in a heated channel. Exp Fluids 49(1):257–266

    Article  Google Scholar 

  • Kim HJ, Kihm KD et al (2003) Examination of ratiometric laser induced fluorescence thermometry for microscale spatial measurement resolution. Int J Heat Mass Transf 46(21):3967–3974

    Article  Google Scholar 

  • Liu J, Enzelberger M et al (2002) A nanoliter rotary device for polymerase chain reaction. Electrophoresis 23(10):1531–1536

    Article  Google Scholar 

  • Meinhart CD, Zhang HS (2000) The flow structure inside a microfabricated inkjet printhead. J Microelectromech Syst 9(1):67–75

    Article  Google Scholar 

  • Meinhart CD, Wereley ST et al (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814

    Article  Google Scholar 

  • Parsley M (1991) The Hallcrest handbook of thermochromic liquid crystal technology. Glenview, IL, Hallcrest

    Google Scholar 

  • Roesgen T, Totaro R (2002) A statistical calibration technique for thermochromic liquid crystals. Exp Fluids 33(5):732–734

    Google Scholar 

  • Sabatino DR, Praisner TJ et al (2000) A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements. Exp Fluids 28(6):497–505

    Article  Google Scholar 

  • Santiago JG, Wereley ST et al (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25(4):316–319

    Article  Google Scholar 

  • Simon J, Saffer S et al (1997) A liquid-filled microrelay with a moving mercury microdrop. J Microelectromech Syst 6(3):208–216

    Article  Google Scholar 

  • Troian SM (2005) Collaborative research—SST: integration of spectroscopic sensors and electroactive nanowell arrays with microfluidic chips based on thermocapillary actuation, award abstract #0529132. National Science Foundation Award Abstract Database. http://www.nsf.gov/awardsearch

  • Yoo JY (2006) Recent studies on fluid flow and heat transfer in thermal microdevices. Nanoscale Microscale Thermophys Eng 10(1):67–81

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the National Science Foundation Fluid Dynamics program through award CBET-0748294. The authors would like to thank Andrey Gunawan for the construction of the heater block.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tait S. Pottebaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basson, M., Pottebaum, T.S. Measuring the temperature of fluid in a micro-channel using thermochromic liquid crystals. Exp Fluids 53, 803–814 (2012). https://doi.org/10.1007/s00348-012-1326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-012-1326-0

Keywords

Navigation