Skip to main content
Log in

Subgrid scale formulation of optical flow for the study of turbulent flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We propose a new formulation of optical flow in the case of passive scalar or solid particles spreading in turbulent flows. The flow equation is defined from the scalar transport equation and a decomposition of our physical quantities (velocity and concentration fields) into two contributions, large and small scales, to account for the lack of spatial resolution in processed images. A subgrid scale model is introduced to model the small scale contribution. Comparisons are made with existing optical flow methods and Particle Image Velocimetry on synthetic and real sequences. The improvement of the estimation of velocity field by the proposed formulation is discussed in the case of a scalar turbulent propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Amini AA (1994) A scalar function formulation for optical flow: applications to X-ray imaging. In: Workshop on biomedical image analysis, pp 117–123

  • Ayrault M, Simoens S (1995) Turbulent concentration determination in gas flow using multiple ccd cameras. J Flow Visual Image Process 2(2):195–208

    Google Scholar 

  • Bailloeul T, Prinet V, Serra B, Marthon P (2005) Spatio-temporal prior shape constraint for level set segmentation. In: Energy minimization methods in computer vision and pattern recognition (EMMCVPR), LNCS 3757. Springer, Berlin, pp 503–519

  • Baker S, Roth S, Scharstein D, Black MJ, Lewis JP, Szeliski R (2007) A database and ation methodology for optical flow. In: International conference on computer vision (ICCV), pp 1–8

  • Barron JL, Fleet DJ, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77

    Article  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Bereziat D, Herlin I, Younes L (1999) Motion estimation using a volume conservation hypothesis. In: International conference on acoustic, speech and signal processing (ICASSP), pp 3385–3388 (Phoenix)

  • Black M, Anandan P (1996) The robust estimation of multiple motions: parametric and piecewise-smooth flow-fields. Comput Vis Image Understand 63(1):75–104

    Article  Google Scholar 

  • Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. Trans Commun 31(4):532–540

    Article  Google Scholar 

  • Carlier J, Wieneke B (2005) Report on production and diffusion of fluid mechanics images and data. Technical Report, Fluid Project deliverable 1.2

  • Cassisa C, Prinet V, Shao L, Simoens S, Liu C (2008) Optical flow robust estimation in a hybrid multi-resolution MRF framework. In: International conference on acoustics, speech and signal processing (ICASSP), pp 793–796

  • Cassisa C, Simoens S, Prinet V (2009) Two-frame optical flow formulation in an unwrapping multi-resolution scheme. In: 14th Iberoamerican conference on pattern recognition (CIARP), LNCS 5856. Springer, Berlin, pp 790–797

  • Cassisa C, Simoens S, Prinet V (2010) Local Vs global energy minimization methods: application to stereo matching. In: International conference on progress in informatics and computing (PIC)

  • Chollet JP, Lesieur M (1981) Parameterisation for small scales of three dimensional isotropic turbulence using spectral closure. J Atmos Sci 38:2747–2757

    Article  Google Scholar 

  • Comte-Bellot G, Corrsin S (1966) The use of a contraction to improve the isotropy of grid generated turbulence. J Fluid Mech 25:657–682

    Article  Google Scholar 

  • Corpetti T, Heitz D, Arroyo G, Menin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97

    Article  Google Scholar 

  • Cui G, Xu C, Fang L, Shao L, Zhang Z (2007) A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence. J Fluid Mech 582:377–397

    Article  MathSciNet  MATH  Google Scholar 

  • Deradorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41:453–480

    Article  Google Scholar 

  • Garbe CS, Spies H, Jähne B (2003) Estimation of surface flow and net heat flux from infrared image sequences. J Math Imaging Vis 19:159–174

    Article  MATH  Google Scholar 

  • Haussecker HW, Fleet DJ (2000) Computing optical flow with physical models of brightness variation. In: Conference on computer vision and pattern recognition, vol 2, pp 760–767

  • Heas P, Memin E, Papadakis N, Szantai A (2007) Layered estimation of atmospheric mesoscale dynamics from satellite imagery. Geosci Remote Sens IEEE Trans 45(12):4087–4104

    Article  Google Scholar 

  • Heitz D, Heas P, Memin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608

    Article  Google Scholar 

  • Heitz D, Memin E, Schnrr C (2010) Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp Fluids 48(3):369–393

    Article  Google Scholar 

  • Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17(1–3):185–203

    Article  Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. USSR Acad Sci 30:299–303

    Google Scholar 

  • Kolmogorov V, Zabih R (2004) What energy ffunctions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell (PAMI) 26(2):147–159

    Article  Google Scholar 

  • Liu T, Shen L (2008) Fluid flow and optical flow. J Fluid Mech 614:253–291

    Article  MathSciNet  MATH  Google Scholar 

  • Nomura A, Miike H, Yokoyama E (1995) Detecting motion and diffusion from a dynamic image sequence (in Japanese). Trans IEEE Jpn 115(C):403–409

    Google Scholar 

  • Papadakis N, Mémin E (2008) Variational assimilation of fluid motion from image sequences. SIAM J Imaging Sci 4:343–363

    Article  Google Scholar 

  • Papenberg N, Bruhn A, Brox T, Weickert J (2003) Numerical justification for multi-resolution optical flow computation. In: International workshop on computer vision and image analysis (IWCVIA), vol 26, pp 7–12

  • Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. Int J Comput Vis 67(2):141–158

    Article  Google Scholar 

  • Ribault C, Sakar S, Stanley S (2001) Large eddy simulation of evolution of a passive scalar in plane jet. Am Inst Aeronaut Astronaut J 39:1509–1516

    Google Scholar 

  • Ruhnau P, Schnorr C (2007) Optical stokes flow estimation: an imaging-based control approach. Exp Fluids 42(1):61–78

    Article  Google Scholar 

  • Shao L, Bertoglio JP, Michard M (1990) Large Eddy simulation of the interaction between two distinct turbulent velocity scales. In: Advances in turbulence, 3 edn. Springer, Berlin, pp 101–112

  • Shao L, Michard M, Bertoglio JP (1991) Effect of a solid body rotation on the turbulent transport. Turbulent Shear Flow 8, Selected paper, Ed. Springer, Berlin, pp 369–381

  • Simoens S, Wallace J (2008) The flow across a street canyon of variable width—part 2: Scalar dispersion from a street level line source. Atmos Environ 42:2489–2503

    Article  Google Scholar 

  • Simoens S, Ayrault M, Wallace J (2007) The flow across a street canyon of variable width—part 1: Kinematic description. Atmos Environ 41:9002–9017

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations i. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Snyman JA (2004) Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Kluwer, Dordrect

    Google Scholar 

  • Spalart P (1988) Direct simulation of a turbulent boundary layer up to Re θ = 1410. J Fluid Mech 187:61–98

    Article  MATH  Google Scholar 

  • Stan ZL (2001) Markov random field modelling in image analysis, 2nd edn. Springer, Berlin

    Google Scholar 

  • Su L, Dahm W (1996) Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. i. Assessment of errors. Phys Fluids 8:1869–1882

    Article  Google Scholar 

  • Su L, Dahm W (1996) Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. ii. Experimental results. Phys Fluids 8:1883–1906

    Article  Google Scholar 

  • Suter D (1994) Motion estimation and vector splines. In: International conference on computer vision and pattern recognition (CVPR), pp 939–942

  • Szeliski R, Zabih R, Scharstein D, Veskler O, Kolmogorov V, Agarwala A, Tappen M, Rother C (2008) A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell (PAMI) 30(6):1068–1080

    Article  Google Scholar 

  • Vincont J, Simoens S, Ayrault M, Wallace J (2000) Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J Fluid Mech 424:127–167

    Article  MATH  Google Scholar 

  • Weickert J, Schnorr C (2001) Variational optic flow computation with a spatio-temporal smoothness constraint. J Math Imaging Vis 14(3):245–255

    Article  MATH  Google Scholar 

  • Winkler G (1995) Image analysis, random fields, and dynamic Monte Carlo methods: a mathematical introduction. Springer, Berlin

    MATH  Google Scholar 

  • Zhou L, Kambhamettu C, Goldgof DB (2000) Fluid structure and motion analysis from multi-spectrum 2d cloud image sequences. In: International conference on computer vision and pattern recognition (CVPR) 2:744–751

Download references

Acknowledgments

The authors wish to thank the team of the European project Fluid in Rennes. Especially, Johan Carlier for giving us the DNS scalar synthetic sequence and Thomas Corpetti for providing us the estimated fields of his OF algorithm for this DNS sequence. This work is partially supported by the 863 program of the Chinese Ministry of Science and Technology and by Tandem - Erasmus Mundus Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cassisa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassisa, C., Simoens, S., Prinet, V. et al. Subgrid scale formulation of optical flow for the study of turbulent flow. Exp Fluids 51, 1739–1754 (2011). https://doi.org/10.1007/s00348-011-1180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1180-5

Keywords

Navigation