Skip to main content
Log in

Intermediate species detection in a morpholine flame: contributions to fuel-bound nitrogen conversion from a model biofuel

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

A slightly fuel-rich (Φ = 1.3) premixed laminar flat morpholine/oxygen/argon flame at 40 mbar was studied with cavity ring-down spectroscopy (CRDS). Morpholine as a secondary amine was considered as a prototypical nitrogenated biofuel. To contribute to the investigation of fuel-nitrogen conversion chemistry in this flame, absolute mole fraction profiles of CH, CN, and NH2 were determined. To our knowledge, this is the first study reporting quantitative mole fractions of these radicals from CRDS in a low-pressure flame of a model biofuel. The species profiles are discussed in combination with some relevant intermediates from molecular beam mass spectrometry, determined in this flame very recently (Lucassen et al., Proc Combust Inst 32(1):1269–1276, 2009). Some relative species profiles were also determined in flames of further amines to facilitate comparison. The results demonstrate that NH3- and HCN-related chemistry occurs in different regions of this flame. HCN production is considerable, and NO is found in the exhaust gases in percent-level concentrations. To monitor the combustion status, chemiluminescence is increasingly being applied as an intrinsic low-cost sensor. We believe to present the first chemiluminescence measurements in a flame of a prototypical nitrogenated biofuel, reporting relative emission intensities for five excited-state species. The shapes and maximum positions of the ground- and excited-state profiles show interesting differences, especially for the CN radical, which must be the consequence of different reaction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bertran CA, Marques CST, Benvenutti LH (1998) Mapping of luminescent species in a flame front. Combust Sci Technol 139(1):1–13

    Article  Google Scholar 

  • Bessler WG (2003) Quantitative nitric oxide concentration and temperature imaging in flames over a wide pressure range with laser-induced fluorescence. Dissertation, Universität Heidelberg, Germany

  • Bohm T, Ditzian N, Peiter G, Volpp HR, Cheskis S, Wolfrum J (2005) Absolute radical concentration measurements in low-pressure H2/O2 flames during the combustion of graphite. Proc Combust Inst 30(2):2131–2139

    Article  Google Scholar 

  • Chou MS, Dean AM, Stern D (1982) Laser absorption measurements of OH, NH, and NH2 in NH3/O2 flames: determination of an oscillator strength for NH2. J Chem Phys 76(11):5334–5340

    Article  Google Scholar 

  • Dagaut P, Gaϊl S, Sahasrabudhe M (2007) Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: experimental and modeling kinetic study. Proc Combust Inst 31(2):2955–2961

    Article  Google Scholar 

  • Dagaut P, Glarborg P, Alzueta MU (2008) The oxidation of hydrogen cyanide and related chemistry. Prog Energy Combust Sci 34(1):1–46

    Article  Google Scholar 

  • Di Nola G, de Jong W, Spliethoff H (2010) TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen. Fuel Proc Technol 91(1):103–115

    Article  Google Scholar 

  • Dressler K, Ramsay DA (1959) The electronic absorption spectra of NH2 and ND2. Philos Trans R Soc A 251(1002):553–602

    Article  Google Scholar 

  • Dubreuil A, Saisirirat P, Foucher F, Chanchaona S, Mounaïm-Rousselle C (2007) Effect of a laboratory-simulated EGR on HCCI n-heptane/ethanol blend fuels combustion characteristics. In: 3rd European Combustion Meeting, Chania, Crete

  • Duynslaegher C, Jeanmart H, Vandooren J (2009) Flame structure studies of premixed ammonia/hydrogen/oxygen/argon flames: experimental and numerical investigation. Proc Combust Inst 32(1):1277–1284

    Article  Google Scholar 

  • Evertsen R, van Oijen JA, Hermanns RTE, de Goey LPH, ter Meulen JJ (2003) Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy. Combust Flame 132(1–2):34–42

    Article  Google Scholar 

  • Fenimore CP (1971) Formation of nitric oxide in premixed hydrocarbon flames. Proc Combust Inst 13:373–380

    Google Scholar 

  • Friedrichs G, Colberg M, Fikri M, Huang Z, Neumann J, Temps F (2005) Validation of the extended simultaneous kinetics and ringdown model by measurements of the reaction NH + NO. J Phys Chem A 109(21):4785–4795

    Article  Google Scholar 

  • Gaydon AG (1974) The spectroscopy of flames, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Glarborg P, Alzueta MU, Dam-Johansen K, Miller JA (1998) Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combust Flame 115(1–2):1–27

    Article  Google Scholar 

  • Glarborg P, Jensen AD, Johnsson JE (2003) Fuel nitrogen conversion in solid fuel fired systems. Prog Energy Combust Sci 29(2):89–113

    Article  Google Scholar 

  • Green RM, Miller JA (1981) The measurement of relative concentration profiles of NH2 using laser absorption spectroscopy. J Quant Spectrosc Radiat Transfer 26(4):313–327

    Article  Google Scholar 

  • Hakka MH, Glaude PA, Herbinet O, Battin-Leclerc F (2009) Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combust Flame 156(11):2129–2144

    Article  Google Scholar 

  • Hansson KM, Samuelsson J, Tullin C, Åmand LE (2004) Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combust Flame 137(3):265–277

    Article  Google Scholar 

  • Hardalupas Y, Orain M (2004) Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust Flame 139(3):188–207

    Article  Google Scholar 

  • Hardalupas Y, Orain M, Panoutsos CS, Taylor AMKP, Olofsson J, Seyfried H, Richter M, Hult J, Aldén M, Hermann F, Klingmann J (2004) Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air (FLAMESEEK). Appl Therm Eng 24(11–12):1619–1632

    Article  Google Scholar 

  • Herbinet O, Pitz WJ, Westbrook CK (2008) Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate. Combust Flame 154(3):507–528

    Article  Google Scholar 

  • Hilborn RC (1982) Einstein coefficients, cross sections, f values, dipole moments, and all that. Am J Phys 50(11):982–986

    Article  Google Scholar 

  • Ikeda Y, Beduneau JL (2005) Attachment structure of a non-premixed laminar methane flame. Proc Combust Inst 30(1):391–398

    Article  Google Scholar 

  • Ikeda Y, Kojima J, Nakajima T, Akamatsu F, Katsuki M (2000) Measurement of the local flamefront structure of turbulent premixed flames by local chemiluminescence. Proc Combust Inst 28(1):343–350

    Article  Google Scholar 

  • Ikeda Y, Kojima J, Hashimoto H (2002) Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame. Proc Combust Inst 29(2):1495–1501

    Article  Google Scholar 

  • Kohse-Höinghaus K, Davidson DF, Chang AY, Hanson RK (1989) Quantitative NH2 concentration determination in shock tube laser-absorption experiments. J Quant Spectrosc Radiat Transfer 42(1):1–17

    Article  Google Scholar 

  • Kohse-Höinghaus K, Oßwald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR (2010) Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem Int Ed 49(21):3572–3597. doi:10.1002/anie.200905335

    Google Scholar 

  • Kojima J, Ikeda Y, Nakajima T (2005) Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane–air premixed flames. Combust Flame 140(1–2):34–45

    Article  Google Scholar 

  • Lucassen A, Oßwald P, Struckmeier U, Kohse-Höinghaus K, Kasper T, Hansen N, Cool TA, Westmoreland PR (2009) Species identification in a laminar premixed low-pressure flame of morpholine as a model substance for oxygenated nitrogen-containing fuels. Proc Combust Inst 32(1):1269–1276

    Article  Google Scholar 

  • Luque J, Crosley D (1999) Lifbase, database and spectral simulation for diatomic molecules (version 1.6). SRI International Report MP 99–009

  • Luque J, Jeffries JB, Smith GP, Crosley DR, Scherer JJ (2001) Combined cavity ringdown absorption and laser-induced fluorescence imaging measurements of CN(B-X) and CH(B-X) in low-pressure CH4–O2-N2 and CH4-NO-O2–N2 flames. Combust Flame 126(3):1725–1735

    Article  Google Scholar 

  • Luque J, Berg PA, Jeffries JB, Smith GP, Crosley DR, Scherer JJ (2004) Cavity ring-down absorption and laser-induced fluorescence for quantitative measurements of CH radicals in low-pressure flames. Appl Phys B 78(1):93–102

    Article  Google Scholar 

  • Mendiara T, Glarborg P (2009) Ammonia chemistry in oxy-fuel combustion of methane. Combust Flame 156(10):1937–1949

    Article  Google Scholar 

  • Mercier X, Pillier L, El Bakali A, Carlier M, Pauwels JF, Desgroux P (2001) NO reburning study based on species quantification obtained by coupling LIF and cavity ring-down spectroscopy. Faraday Discuss 119:305–319

    Article  Google Scholar 

  • Miller JA, Bowman CT (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15(4):287–338

    Article  Google Scholar 

  • Morrell MR, Seitzman JM, Wilensky M, Lubarsky E, Lee J, Zinn B (2001) Interpretation of optical emissions for sensors in liquid fueled combustors. In: 39th Aerospace Sciences Meeting & Exhibit, Reno, USA, AIAA 2001–0787

  • Muruganandam TM, Kim BH, Morrell MR, Nori V, Patel M, Romig BW, Seitzman JM (2005) Optical equivalence ratio sensors for gas turbine combustors. Proc Combust Inst 30(2):1601–1609

    Article  Google Scholar 

  • Nori VN, Seitzman JM (2007) Chemiluminescence measurements and modeling in syngas, methane and Jet-A fueled combustors. In: 45th Aerospace Sciences Meeting and Exhibit, Reno, USA, AIAA 2007–0466

  • Nori V, Seitzman J (2008) Evaluation of chemiluminescence as a combustion diagnostic under varying operating conditions. In: 46th Aerospace Sciences Meeting and Exhibit, Reno, USA, AIAA 2008–953

  • Pretzler G (1991) A new method for numerical Abel-inversion. Z Naturforsch 46a:639–641

    MathSciNet  Google Scholar 

  • Pretzler G, Jäger H, Neger T, Philipp H, Woisetschläger J (1992) A new method for numerical Abel-inversion. Z Naturforsch 47a:955–970

    Google Scholar 

  • Rahinov I, Ditzian N, Lozovsky VA, Cheskis S (2002) Intracavity laser absorption spectroscopy measurements of CN using red system A-X. Simultaneous observation of CN, NH2, HNO and 1CH2 in low pressure hydrocarbon flames doped with nitrogen oxides. Chem Phys Lett 352(3–4):169–175

    Article  Google Scholar 

  • Rahinov I, Goldman A, Cheskis S (2006) Absorption spectroscopy diagnostics of amidogen in ammonia-doped methane/air flames. Combust Flame 145(1–2):105–116

    Article  Google Scholar 

  • Rensberger KJ, Jeffries JB, Copeland RA, Kohse-Höinghaus K, Wise ML, Crosley DR (1989) Laser-induced fluorescence determination of temperatures in low pressure flames. Appl Opt 28(17):3556–3566

    Article  Google Scholar 

  • Rothman LS et al (2005) The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Radiat Transfer 96(2):139–204

    Article  Google Scholar 

  • Smith GP, Luque J, Park C, Jeffries JB, Crosley DR (2002) Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence. Combust Flame 131(1–2):59–69

    Article  Google Scholar 

  • Smith GP, Park C, Schneiderman J, Luque J (2005a) C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames. Combust Flame 141(1–2):66–77

    Article  Google Scholar 

  • Smith GP, Park C, Luque J (2005b) A note on chemiluminescence in low-pressure hydrogen and methane–nitrous oxide flames. Combust Flame 140(4):385–389

    Article  Google Scholar 

  • Stolk RL, ter Meulen JJ (2002) Cavity ring down spectroscopy measurements of absolute CN concentrations during flame deposition of diamond. J Chem Phys 117(18):8281–8291

    Article  Google Scholar 

  • Struckmeier U, Oßwald P, Kasper T, Böhling L, Heusing M, Köhler M, Brockhinke A, Kohse-Höinghaus K (2009) Sampling probe influences on temperature and species concentrations in molecular beam mass spectroscopic investigations of flat premixed low-pressure flames. Z Phys Chem 223(4–5):503–537

    Google Scholar 

  • Stubenberger G, Scharler R, Zahirović S, Obernberger I (2008) Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models. Fuel 87(6):793–806

    Article  Google Scholar 

  • Sullivan N, Jensen A, Glarborg P, Day MS, Grcar JF, Bell JB, Pope CJ, Kee RJ (2002) Ammonia conversion and NO x formation in laminar coflowing nonpremixed methane-air flames. Combust Flame 131(3):285–298

    Article  Google Scholar 

  • Tian FJ, Yu J, McKenzie LJ, Ji Hayashi, Li CZ (2007a) Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam: a comparative study of coal and biomass. Energy Fuels 21(2):517–521

    Article  Google Scholar 

  • Tian Z, Li Y, Zhang T, Zhu A, Cui Z, Qi F (2007b) An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization. Combust Flame 151(1–2):347–365

    Article  Google Scholar 

  • Tian Z, Li Y, Zhang T, Zhu A, Qi F (2008) Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames. J Phys Chem A 112(51):13549–13555

    Article  Google Scholar 

  • Tian Z, Li Y, Zhang L, Glarborg P, Qi F (2009) An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combust Flame 156(7):1413–1426

    Article  Google Scholar 

  • Vagelopoulos CM, Frank JH (2005) An experimental and numerical study on the adequacy of CH as a flame marker in premixed methane flames. Proc Combust Inst 30(1):241–249

    Article  Google Scholar 

  • Votsmeier M, Song S, Davidson DF, Hanson RK (1999) Shock tube study of monomethylamine thermal decomposition and NH2 high temperature absorption coefficient. Int J Chem Kinet 31(5):323–330

    Article  Google Scholar 

  • Wachsmuth U, Abel B (2003) Linewidths and line intensity measurements in the weak 3A2(000) ← X1A1(000) band of ozone by pulsed cavity ringdown spectroscopy. J Geophys Res 108(15D):4473–4483

    Article  Google Scholar 

  • Williams BA, Fleming JW (1994) Comparative species concentrations in CH4/O2/Ar flames doped with N2O, NO, and NO2. Combust Flame 98(1–2):93–106

    Article  Google Scholar 

  • Williams BA, Fleming JW (1997) Radical species profiles in low-pressure methane flames containing fuel nitrogen compounds. Combust Flame 110(1–2):1–13

    Article  Google Scholar 

  • Wu C, Tree D, Baxter L (2007) Reactivity of NH3 and HCN during low-grade fuel combustion in a swirling flow burner. Proc Combust Inst 31(2):2787–2794

    Article  Google Scholar 

  • Yalin AP, Zare RN (2002) Effect of laser lineshape on the quantitative analysis of cavity ring-down signals. Laser Phys 12(8):1065–1072

    Google Scholar 

  • Zalicki P, Ma Y, Zare RN, Wahl EH, Owano TG, Kruger CH (1995) Measurement of the methyl radical concentration profile in a hot-filament reactor. Appl Phys Lett 67(1):144–146

    Article  Google Scholar 

Download references

Acknowledgments

Fruitful discussions with Dr. Patrick Oßwald are gratefully acknowledged. The investigations were supported by Deutsche Forschungsgemeinschaft under contracts KO1363/18-3 and PAK 116/2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Nau or Katharina Kohse-Höinghaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nau, P., Seipel, A., Lucassen, A. et al. Intermediate species detection in a morpholine flame: contributions to fuel-bound nitrogen conversion from a model biofuel. Exp Fluids 49, 761–773 (2010). https://doi.org/10.1007/s00348-010-0916-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0916-y

Keywords

Navigation