Skip to main content

Advertisement

Log in

Turbulence under spilling breakers using discrete wavelets

  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Measurements of the kinetic energy of turbulence under spilling waves have been analysed using orthogonal wavelets. Data have been collected using 2-D laser Doppler velocimetry for pre-breaking regular waves, generated in a wave tank. The contribution of different scale vortices is computed, and also phase resolved. It is found that micro-vortices (2 mm <l<0.10 m for the tested case) and mid-size vortices (0.10 m<l<4.0 m for the tested case) are generally dominant, carrying more than 70% of the total turbulence energy under the wave crest. The phase resolved energy spectra are computed, which allows the computation of the transverse and of the longitudinal correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

∼:

phase or ensemble average operator

Λ:

phasic average operator

−:

time average operator

〈...〉:

ensemble average

α∼3α1 :

Kolgomorov constant

γ γ jk :

function

ρ :

mass density (kg/m3)

ν :

kinematic fluid viscosity (m2/s)

Λ:

integral length scale of turbulence (m)

ΔT i :

time interval (s)

λ E :

Taylor length micro-scale (m)

ε :

turbulent energy dissipation rate (m2/s3)

κ :

turbulent kinetic energy (m2/s2)

ζ :

translation parameter

τ E :

Eulerian time micro-scale (s)

τ :

shear stress (Pa)

η K :

Kolgomorov length micro-scale (m)

A j (x):

approximation at level j

a :

dilation parameter

C :

wave celerity (m/s)

D j (x):

detail at level j

DWT:

discrete wavelet transform

E 1(k 1), E 2({ik}1):

energy spectrum in the wave-number domain (m3/s2)

E 1(f):

energy spectrum in frequency domain (m2/s)

f :

frequency (Hz), function

f acq :

sampling frequency (Hz)

g :

gravitational acceleration (m/s2)

h :

local water depth (m)

H :

wave height (m)

k, k 1 :

wave number (m−1)

k min, k max :

minimum, maximum wave number

k d :

dissipative wave number (m−1)

k :

wave number (vector) (m−1)

l :

length scale (m)

LDV:

laser Doppler velocimetry

N :

number of samples

N:

number of levels in wavelet decomposition

PIV:

particle image velocimetry

R E(r):

normalised Eulerian space autocorrelation

R E(τ):

normalised Eulerian time autocorrelation

Re λ :

Reynolds number based on Taylor micro-scale

s sj :

fluctuating rate of strain (s−1)

STFT:

short time Fourier transform

T :

wave period (s)

T m :

period of time averaging (s)

TFR:

time frequency representation

t, t k, t′, τ:

time variable (s)

T E :

time macro-scale of turbulence (s)

ū :

mean velocity

u′ ν′ :

fluctuating velocity (m/s)

~u,~v :

organised fluctuating velocity (m/s)

U, V. W :

velocity scales, velocity components (m/s)

u :

turbulence scale (m/s)

u :

velocity vector (m/s)

VITA:

variable interval time average

W jk :

wavelet coefficients

x, y, z, x i :

spatial co-ordinates (m)

References

  • Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Camussi R, Gui G (1997) Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures. J Fluid Mech 348:177–199

    Article  MathSciNet  Google Scholar 

  • Chang K-A, Liu PL-F (1998) Velocity, acceleration and vorticity under a breaking wave. Phys Fluids 10:327–329

    Article  MathSciNet  Google Scholar 

  • Cox DT, Kobayashi N, Okayasu A (1994) Vertical variations of fluid velocities and shear stress in surf zones. In: Proceedings of the 24th International Conference on Coastal engineering. ASCE, Reston, Va., pp 98–112

    Google Scholar 

  • Dabiri D, Gharib M (1997) Experimental investigation of the vorticity generation within a spilling water wave. J Fluid Mech 330: 113–139

    Article  Google Scholar 

  • Deigaard R, Fredsøe J, Hedegaard IB (1986) Suspended sediment in the surf zone. J Waterway, Port, Coast Ocean Eng 112:115–128

    Article  Google Scholar 

  • Farge M (1992) Wavelet transforms and their applications to turbulence. Ann Rev Fluid Mech 24:395–457

    Article  MathSciNet  Google Scholar 

  • Foufoula-Georgiu E, Kumar P (eds) (1994) Wavelets in geophysics. In: Chui CK (series ed.) Wavelet analysis and its applications. Academic Press, New York

  • Gabor D (1946) Theory of communication. J Inst Elect Eng 93:429–457

    Google Scholar 

  • George R, Flick RE, Guza RT (1994) Observation of turbulence in the surf zone. J Geophys Res 99(C1):801–810

    Article  Google Scholar 

  • Gilliam X, Dunyak J, Doggett A, Smith D (2000) Coherent structure detection using wavelet analysis in long time-series. J Wind Eng Indust Aerodyn 88:183–195

    Article  Google Scholar 

  • Greated CA, Emarat N (2000) Optical studies of wave kinematics. In: Liu PL-F (ed.) Advances in coastal and ocean engineering, vol 6. World Scientific, Singapore

    Google Scholar 

  • Hajj MR (1999) Intermittency of energy containing scales in atmospheric surface layer. J Eng Mech ASCE 125:797–803

    Article  Google Scholar 

  • Hajj MR, Tieleman HW, Tian L (2000) Wind tunnel simulation of time variations of turbulence and effects on pressure on surface-mounted prisms. J Wind Eng Ind Aerodyn 88:197–212

    Article  Google Scholar 

  • Hattori M, Aono T (1985) Experimental study on turbulence structures under spilling breakers. In: Toba H, Mitsuyasu H (eds) The ocean surface. Reidel, Dordrecht, pp 419–424

    Google Scholar 

  • Hinze JO (1975) Turbulence. McGraw-Hill, New York

    Google Scholar 

  • Hudgins L (1992) Wavelet analysis of atmospheric turbulence. Ph.D. Thesis, University of California, Irvine, Calif.

    Google Scholar 

  • Kaspersen JH, Krostad P-Å (2001) Wavelet-based method for burst detection. Fluid Dynam Res 28:223–236

    Article  MATH  MathSciNet  Google Scholar 

  • Kolgomorov AN (1962) A refinement of previous hypotheses concerning the local structure in a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85

    Article  MathSciNet  Google Scholar 

  • Longo S, Losada IJ, Petti M, Pasotti N, Lara J (2001) Measurements of breaking waves and bores through a USD velocity profiler. Technical Report UPR/UCa_01_2001, University of Parma, University of Santander

  • Longo S, Petti M, Losada IJ (2002) Turbulence in the surf zone and in the swash zone: a review. Coastal Eng 45:129–147

    Article  Google Scholar 

  • Lin J-C, Rockwell D (1994) Instantaneous structure of a breaking wave. Phys Fluids 6:2877–2879

    Article  Google Scholar 

  • Liu PC (2000) Wavelet transform and new perspective on coastal and ocean engineering data analysis. In: Liu PL-F (ed.) Advances in coastal and ocean engineering, vol 6. World Scientific, Singapore

    Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Machine Intell 11:674–693

    Article  MATH  Google Scholar 

  • McComb WD (1990) The physics of fluid turbulence. Oxford University Press, Oxford

    Google Scholar 

  • Nadaoka K, Kondoh T (1982) Laboratory measurements of velocity field structure in the surf zone by LDV. Coastal Eng Japan 25:125–145

    Google Scholar 

  • Nadaoka K, Hino M, Koyano Y (1989) Structure of the turbulent flow field under breaking waves in the surf zone. J Fluid Mech 204:359–387

    Article  Google Scholar 

  • Newland DE (1993) Random vibrations, spectral analysis and wavelet analysis, 3rd edn. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Obukhov AM (1962) Some specific features of atmospheric turbulence. J Fluid Mech 13:77–81

    Article  MathSciNet  Google Scholar 

  • Pao YH (1965) Structure of turbulent velocity and scalar fields at large wavenumbers. Phys Fluids 8:1063–424

    Article  Google Scholar 

  • Petti M, Longo S (2001) Turbulence experiments in the swash zone. Coastal Eng 43:1–24

    Article  Google Scholar 

  • Rodriguez A, Sanchez-Arcilla A, Redondo JM, Mosso C (1999) Macroturbulence measurements with electromagnetic and ultrasonic sensors: a comparison under high-turbulent flows. Exp Fluids 27:31–42

    Article  Google Scholar 

  • Sakai T, Inada Y, Sandanbata I (1982) Turbulence generated by wave breaking on beach. In: Proceedings of the 18th International Conference on Coastal engineering. ASCE, Reston, Va., pp 3–21

    Google Scholar 

  • Stive MJF (1980) Velocity and pressure field of spilling breakers. Proceedings of the International Conference on Coastal engineering. ASCE, Reston, Va., pp 547–566

    Google Scholar 

  • Svendsen IA (1987) Analysis of surf zone turbulence. J Geophys Res 92:5115–5124

    Article  Google Scholar 

  • Svendsen IA, Putrevu U (1995) Surf zone hydrodynmics. Research Report No. CACR-95-02, University of Delaware

  • Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Thornton EB (1979) Energetics of breaking waves in the surf zone. J. Geophys Res 84:4931–4938

    Article  Google Scholar 

  • Ting CKF, Kirby JT (1994) Observation of undertow and turbulence in a laboratory surf-zone. Coastal Eng 24:51–80

    Article  Google Scholar 

  • Ting CKF, Kirby JT (1995) Dynamics of surf-zone turbulence in a strong plunging breaker. Coastal Eng 24:177–204

    Article  Google Scholar 

  • Ting CKF, Kirby JT (1996) Dynamics of surf-zone turbulence in a spilling breaker. Coastal Eng 27:131–160

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Ville J (1948) Théorie et applications de la notion de signal analytique. Câbles Transmission 2:61–74

    Google Scholar 

  • Wigner EP (1932) Quantum correction for thermodynamic equilibrium. Phys Rev 40:749–759

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Longo.

Additional information

Published online: 23 November 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, S. Turbulence under spilling breakers using discrete wavelets. Experiments in Fluids 34, 181–191 (2003). https://doi.org/10.1007/s00348-002-0545-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-002-0545-1

Keywords

Navigation