Skip to main content
Log in

Epidemiologie und Anatomie der Myopie

Epidemiology and anatomy of myopia

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Myopie nimmt weltweit, insbesondere in Ost- und Südostasien, in ihrer Häufigkeit zu.

Ziel der Arbeit

Das Ziel der Arbeit ist die Darstellung der Epidemiologie der Myopie und der Myopie-assoziierten morphologischen Veränderungen.

Material und Methoden

Die Ergebnisse von epidemiologischen, klinischen und histologischen Studien werden zusammenfassend beschrieben.

Ergebnisse

In den letzten 3 Dekaden hat die Prävalenz der Myopie ausgeprägt zugenommen, sodass zurzeit ca. 80–90 % der 18-Jährigen in Ostasien myop und 10–20 % hoch myop sind. Man schätzt, dass im Jahr 2050 die Häufigkeit der Myopie auf 50 % und die der hohen Myopie auf ca. 10 % weltweit ansteigen wird und dass die hohe Myopie wegen der damit verbundenen myopischen Makulopathie und glaukomatösen Optikusatrophie zur häufigsten Ursache für irreversible Erblindung werden kann. Morphologisch ist die Myopie gekennzeichnet durch eine vornehmlich sagittale und zu geringem Anteil koronare Bulbusvergrößerung, Verdünnung der Netzhaut und retinalen Pigmentepithelzelldichte im Äquatorbereich, Verdünnung der Choroidea und Sklera vornehmlich am hinteren Pol, unveränderte Dicke der Bruch-Membran insgesamt und der Retina im Makulagebiet, unveränderte Dichte der retinalen Pigmentepithelzelldichte im Makulabereich, vergrößerte Papillen-Fovea-Entfernung durch die sich bildenden parapapillären Gamma- und Deltazonen und vertikale Rotation und Vergrößerung der Papille mit Verlängerung und Verdünnung der Lamina cribrosa und des peripapillären Skleralstegs.

Diskussion

Diese morphologischen Veränderungen lassen sich möglicherweise durch eine Neubildung und Verlängerung der Bruch-Membran im Äquatorbereich als Ursache für die sagittale Bulbusverlängerung erklären.

Abstract

Background

The prevalence of myopia has markedly increased, particularly in the young generations in East and Southeast Asia.

Objective

The aim is to describe the epidemiology of myopia and the morphological alterations associated with myopia.

Material and methods

The results of epidemiological, clinical and histological studies are summarized.

Results

During the last three decades the prevalence of myopia has markedly increased so that currently 80–90% of 18-years-olds in East Asia are myopic and 10–20% are highly myopic. It is estimated that by 2050 the frequency of myopia worldwide will increase to 50% and high myopia to ca. 10% and high myopia will become the most frequent cause of irreversible blindness due to the association with myopic maculopathy and glaucomatous optic nerve atrophy. Myopia is morphologically characterized by predominantly sagittal and to a lesser extent coronal enlargement of the eyeball. This results in retinal thinning and reduction in the density of the retinal pigment epithelium (RPE) in the equatorial region, thinning of the choroid and sclera mostly at the posterior pole, normal retinal thickness and RPE density in the macular region, normal thickness of Bruch’s membrane (BM) in any region, elongated disc-fovea distance due to the development of parapapillary gamma and delta zones, enlargement and vertical rotation of the optic disc and elongation and thinning of the lamina cribrosa and peripapillary scleral flange.

Discussion

These morphological alterations can possibly be explained by a new formation and elongation of the BM in the equatorial region leading to sagittal elongation of the eyeball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Flaxman SR, Bourne RRA, Resnikoff S et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5:e1221–e1234

    PubMed  Google Scholar 

  2. Holden BA, Fricke TR, Wilson DA et al (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123:1036–1042

    PubMed  Google Scholar 

  3. Wu JF, Bi HS, Wang SM (2013) Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study. PLoS ONE 8:e82763

    PubMed  PubMed Central  Google Scholar 

  4. You QS, Wu LJ, Duan JL et al (2014) Prevalence of myopia in school children in greater Beijing: the Beijing Childhood Eye Study. Acta Ophthalmol 92:e398–e406

    PubMed  Google Scholar 

  5. Guo K, Yang DY, Wang Y et al (2015) Prevalence of myopia in school children in Ejina. The Gobi Desert Children Eye Study. Invest Ophthalmol Vis Sci 56:1769–1774

    PubMed  Google Scholar 

  6. Xu L, Wang Y, Wang S et al (2007) High myopia and glaucoma susceptibility. The Beijing Eye Study. Ophthalmology 114:216–220

    PubMed  Google Scholar 

  7. Ohno-Matsui K, Kawasaki R, Jonas JB et al (2015) International classification and grading system for myopic maculopathy. Am J Ophthalmol 159:877–883

    PubMed  Google Scholar 

  8. Jonas JB, Weber P, Nagaoka N et al (2017) Glaucoma in high myopia and parapapillary delta zone. PLoS ONE 12:e175120

    PubMed  PubMed Central  Google Scholar 

  9. Morgan IG, Ohno-Matsui K, Saw SM (2012) Myopia. Lancet 379:1739–1748

    PubMed  Google Scholar 

  10. Rose KA, Morgan IG, Ip J et al (2008) Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 115:1279–1285

    PubMed  Google Scholar 

  11. You QS, Wu LJ, Duan JL et al (2012) Factors associated with myopia in school children in China. The Beijing Childhood Eye Study. PLoS ONE 7:e52668

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang YX, Xu L, Jonas JB (2013) The effect of the Chinese cultural revolution and great leap forward on the prevalence of myopia. Eur J Epidemiol 28:1001–1004

    PubMed  Google Scholar 

  13. He M, Xiang F, Zeng Y et al (2015) Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 314:1142–1148

    CAS  PubMed  Google Scholar 

  14. McBrien NA, Cornell LM, Gentle A (2001) Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci 42:2179–2187

    CAS  PubMed  Google Scholar 

  15. Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res 35:1175–1194

    CAS  PubMed  Google Scholar 

  16. Vurgese S, Panda-Jonas S, Jonas JB (2012) Scleral thickness in human eyes. PLoS ONE 7:e29692

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei WB, Xu L, Jonas JB et al (2013) Subfoveal choroidal thickness: the Beijing Eye Study. Ophthalmology 120:175–180

    PubMed  Google Scholar 

  18. Heine L (1899) Beiträge zur Anatomie des myopischen Auges. Arch Augenheilkd 38:277–290

    Google Scholar 

  19. Vurgese S, Panda-Jonas S, Jonas JB (2012) Sclera thickness in human globes and its relations to age, axial length and glaucoma. PLoS ONE 7:e29692

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jonas JB, Ohno-Matsui K, Jiang WJ et al (2017) Bruch membrane and the mechanism of myopization. A new theory. Retina 37:1428–1440

    PubMed  Google Scholar 

  21. Jonas JB, Ohno-Matsui K, Holbach L et al (2017) Association between axial length and horizontal and vertical globe diameters. Graefes Arch Clin Exp Ophthalmol 255:237–242

    PubMed  Google Scholar 

  22. Jonas JB, Holbach L, Panda-Jonas S (2014) Scleral cross section area and volume and axial length. PLoS ONE 9:e93551

    PubMed  PubMed Central  Google Scholar 

  23. Shen L, Xu X, You QS et al (2015) Scleral thickness in Chinese eyes. Invest Ophthalmol Vis Sci 56:2720–2727

    PubMed  Google Scholar 

  24. Shen L, You QS, Xu X et al (2016) Scleral and choroidal volume in relation to axial length in infants with retinoblastoma versus adults with malignant melanomas or end-stage glaucoma. Graefes Arch Clin Exp Ophthalmol 254:1779–1786

    PubMed  Google Scholar 

  25. Jonas JB, Holbach L, Panda-Jonas S (2014) Bruch’s membrane thickness in high myopia. Acta Ophthalmol 92:e470–e474

    PubMed  Google Scholar 

  26. Bai HX, Mao Y, Shen L et al (2017) Bruch’s membrane thickness in relationship to axial length. PLoS ONE 12:e182080

    PubMed  PubMed Central  Google Scholar 

  27. Jonas JB, Ohno-Matsui K, Holbach L et al (2017) Retinal pigment epithelium cell density in relationship to axial length in human eyes. Acta Ophthalmol 95:e22–e28

    PubMed  Google Scholar 

  28. Jonas JB, Xu L, Wei WB et al (2016) Retinal thickness and axial length. The Beijing Eye Study 2011. Invest Ophthalmol Vis Sci 57:1791–1797

    PubMed  Google Scholar 

  29. Jonas JB, Wang YX, Zhang Q et al (2015) Macular Bruch’s membrane length and axial length. The Beijing Eye Study. PLoS ONE 10:e136833

    PubMed  PubMed Central  Google Scholar 

  30. Shao L, Xu L, Wei WB et al (2014) Visual acuity and subfoveal choroidal thickness. The Beijing Eye Study. Am J Ophthalmol 158:702–709

    PubMed  Google Scholar 

  31. Jonas RA, Wang YX, Yang H et al (2015) Optic disc – fovea distance, axial length and parapapillary zones. The Beijing Eye Study 2011. PLoS ONE 10:e138701

    PubMed  PubMed Central  Google Scholar 

  32. Guo Y, Liu LJ, Tang P et al (2018) Optic disc-fovea distance and myopia progression in school children: the Beijing Children Eye Study. Acta Ophthalmol. https://doi.org/10.1111/aos.13728

    Article  PubMed  Google Scholar 

  33. Jonas JB, Jonas SB, Jonas RA et al (2012) Parapapillary atrophy: histological gamma zone and delta zone. PLoS ONE 7:e47237

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai Y, Jonas JB, Huang H et al (2013) Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 54:2013–2018

    PubMed  Google Scholar 

  35. Jonas JB, Ohno-Matsui K, Spaide RF et al (2013) Macular Bruch’s membrane holes in high myopia: associated with gamma zone and delta zone of parapapillary region. Invest Ophthalmol Vis Sci 54:1295–1230

    PubMed  Google Scholar 

  36. Jonas JB, Wang YX, Zhang Q et al (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402

    CAS  PubMed  Google Scholar 

  37. Jonas RA, Wang YX, Yang H et al (2015) Optic disc-fovea angle: The Beijing Eye Study. PLoS ONE 10:e141771

    PubMed  PubMed Central  Google Scholar 

  38. Smith EL 3rd, Hung LF, Huang J et al (2010) Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest Ophthalmol Vis Sci 51:3864–3873

    PubMed  PubMed Central  Google Scholar 

  39. Berntsen DA, Barr CD, Mutti DO et al (2013) Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses. Invest Ophthalmol Vis Sci 54:5761–5770

    PubMed  PubMed Central  Google Scholar 

  40. Hasebe S, Jun J, Varnas SR (2014) Myopia control with positively aspherized progressive addition lenses: a 2-year, multicenter, randomized, controlled trial. Invest Ophthalmol Vis Sci 55:7177–7788

    PubMed  Google Scholar 

  41. Benavente-Pérez A, Nour A, Troilo D (2014) Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci 55:6765–6773

    PubMed  PubMed Central  Google Scholar 

  42. Harder BC, von Baltz S, Schlichtenbrede FC et al (2013) Intravitreal bevacizumab for retinopathy of prematurity: refractive error results. Am J Ophthalmol 155:1119–1124.e1

    CAS  PubMed  Google Scholar 

  43. Lee YS, See LC, Chang SH et al (2018) Macular structures, optical components, and visual acuity in preschool children after intravitreal bevacizumab or laser treatment. Am J Ophthalmol 192:20–30

    PubMed  Google Scholar 

  44. van Soest SS, de Wit GM, Essing AH et al (2007) Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch’s membrane. Mol Vis 13:1608–1617

    PubMed  Google Scholar 

  45. Jiang WJ, Song HX, Li SY et al (2017) Amphiregulin antibody and reduction of axial elongation in experimental myopia. EBioMedicine 17:134–144

    PubMed  PubMed Central  Google Scholar 

  46. Wang X, Teoh CKG, Chan ASY et al (2018) Biomechanical properties of Bruch’s membrane-choroid complex and their influence on optic nerve head biomechanics. Invest Ophthalmol Vis Sci 59:2808

    CAS  PubMed  Google Scholar 

  47. Jonas JB, Wang YX, Zhang Q et al (2015) Macular Bruch’s membrane length and axial length. The Beijing Eye Study. PLoS ONE 10:e136833

    PubMed  PubMed Central  Google Scholar 

  48. Jonas JB, Ohno-Matsui K, Spaide RF et al (2013) Macular Bruch’s membrane defects and axial length: association with gamma zone and delta zone in peripapillary region. Invest Ophthalmol Vis Sci 54:1295–1302

    PubMed  Google Scholar 

  49. Ohno-Matsui K, Jonas JB, Spaide RF (2016) Macular Bruch’s membrane holes in highly myopic patchy chorioretinal atrophy. Am J Ophthalmol 166:22–28

    PubMed  Google Scholar 

  50. Jonas JB, Ohno-Matsui K, Panda-Jonas S (2017) Optic nerve head histopathology in high axial myopia. J Glaucoma 26:187–193

    PubMed  Google Scholar 

  51. Jonas JB, Wang YX, Zhang Q et al (2016) Parapapillary gamma zone and axial elongation-associated optic disc rotation: The Beijing Eye Study. Invest Ophthalmol Vis Sci 57:396–402

    CAS  PubMed  Google Scholar 

  52. Fan YY, Jonas JB, Wang YX et al (2017) Horizontal and vertical optic disc rotation. The Beijing Eye Study. PLoS ONE 12:e175749

    PubMed  PubMed Central  Google Scholar 

  53. Dai Y, Jonas JB, Ling Z et al (2015) Ophthalmoscopic-perspectively distorted optic disc diameters and real disc diameters. Invest Ophthalmol Vis Sci 56:7076–7083

    PubMed  Google Scholar 

  54. Jonas JB, Jonas SB, Jonas RA et al (2011) Histology of the parapapillary region in high myopia. Am J Ophthalmol 152:1021–1029

    PubMed  Google Scholar 

  55. Reis AS, Sharpe GP, Yang H et al (2012) Optic disc margin anatomy in patients with glaucoma and normal controls with spectral domain optical coherence tomography. Ophthalmology 119:738–747

    PubMed  PubMed Central  Google Scholar 

  56. Demer JL (2016) Optic nerve sheath as a novel mechanical load on the globe in ocular ductionoptic nerve sheath constrains duction. Invest Ophthalmol Vis Sci 57:1826–1838

    PubMed  PubMed Central  Google Scholar 

  57. Wang X, Rumpel H, Lim WE et al (2016) Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol Vis Sci 57:2452–2462

    PubMed  Google Scholar 

  58. Spaide RF, Akiba M, Ohno-Matsui K (2012) Evaluation of peripapillary intrachoroidal cavitation with swept source and enhanced depth imaging optical coherence tomography. Retina 32:1037–1044

    PubMed  Google Scholar 

  59. Ohno-Matsui K, Shimada N, Akiba M et al (2013) Characteristics of intrachoroidal cavitation located temporal to optic disc in highly myopic eyes. Eye (Lond) 27:630–638

    CAS  Google Scholar 

  60. Dai Y, Jonas JB, Ling Z et al (2015) Unilateral peripapillary intrachoroidal cavitation and optic disc rotation. Retina 35:655–659

    PubMed  Google Scholar 

  61. Jonas JB, Gusek GC, Naumann GO (1988) Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol 226:587–590

    CAS  PubMed  Google Scholar 

  62. Dichtl A, Jonas JB, Naumann GO (1998) Histomorphometry of the optic disc in highly myopic eyes with absolute secondary angle closure glaucoma. Br J Ophthalmol 82:286–289

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu L, Li Y, Wang S et al (2007) Characteristics of highly myopic eyes. The Beijing Eye Study. Ophthalmology 114:121–126

    PubMed  Google Scholar 

  64. Jonas JB (2005) Optic disc size correlated with refractive error. Am J Ophthalmol 139:346–348

    PubMed  Google Scholar 

  65. Jonas JB, Fang Y, Weber P et al (2018) Parapapillary gamma zone and delta zone in high myopia. Retina 38:931–938

    PubMed  Google Scholar 

  66. Jonas JB, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45:2660–2665

    PubMed  Google Scholar 

  67. Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44:5189–5195

    PubMed  Google Scholar 

  68. Ren R, Jonas JB, Tian G et al (2010) Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology 117:259–266

    PubMed  Google Scholar 

  69. Jonas JB, Jonas SB (2010) Histomorphometry of the circular arterial ring of Zinn-Haller in normal and glaucomatous eyes. Acta Ophthalmol 88:e317–e322

    PubMed  Google Scholar 

  70. Jonas JB, Holbach L, Panda-Jonas S (2013) Peripapillary arterial circle of Zinn-Haller: location and spatial relationships. PLoS ONE 8:e78867

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Suh MH, Zangwill LM, Manalastas PIC et al (2018) Deep-layer microvasculature dropout by optical coherence tomography angiography and microstructure of parapapillary atrophy. Invest Ophthalmol Vis Sci 59:1995–2004

    PubMed  PubMed Central  Google Scholar 

  72. Yan YN, Wang YX, Xu L et al (2015) Fundus tessellation: prevalence and associated factors. The Beijing eye study 2011. Ophthalmology 122:1873–1880

    PubMed  Google Scholar 

  73. Ohno-Matsui K, Tokoro T (1996) The progression of lacquer cracks in pathologic myopia. Retina 16:29–37

    CAS  PubMed  Google Scholar 

  74. Ohno-Matsui K, Ito M, Tokoro T (1996) Subretinal bleeding without choroidal neovascularization in pathologic myopia. A sign of new lacquer crack formation. Retina 16:196–202

    CAS  PubMed  Google Scholar 

  75. Spaide RF, Jonas JB (2015) Peripapillary atrophy with large dehiscences in Bruch membrane in pseudoxanthoma elasticum. Retina 35:1507–1510

    PubMed  Google Scholar 

  76. Ohno-Matsui K, Jonas JB, Spaide RF (2015) Macular Bruch’s membrane holes in choroidal neovascularization-related myopic macular atrophy by swept-source optical coherence tomography. Am J Ophthalmol 162:133–139

    PubMed  Google Scholar 

  77. You QS, Peng XY, Xu L et al (2016) Macular Bruch’s membrane defects in highly myopic eyes. The Beijing Eye Study. Retina 36:517–523

    PubMed  Google Scholar 

  78. Yan YN, Wang YX, Yang Y et al (2018) Ten-year progression of myopic maculopathy: The Beijing Eye Study 2001–2011. Ophthalmology 125:1253–1263

    PubMed  Google Scholar 

  79. Fang Y, Yokoi T, Nagaoka N et al (2018) Progression of myopic maculopathy during 18-year follow-up. Ophthalmology 125:863–877

    PubMed  Google Scholar 

  80. Xu X, Fang Y, Jonas JB et al (2018) Ridge-shaped macula in young myopic patients and its differentiation from typical dome-shaped macula in elderly myopic patients. Retina. https://doi.org/10.1097/iae.0000000000002395

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gaucher D, Erginay A, Lecleire-Collet A et al (2008) Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol 145:909–914

    PubMed  Google Scholar 

  82. Fang Y, Jonas JB, Yokoi T et al (2017) Macular Bruch’s membrane defect and dome-shaped macula in high myopia. PLoS ONE 12:e178998

    PubMed  PubMed Central  Google Scholar 

  83. Shinohara K, Tanaka N, Jonas JB et al (2018) Ultrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma. Ophthalmology 125:1575–1586

    PubMed  Google Scholar 

  84. Xu X, Fang Y, Yokoi T et al (2018) Posterior staphylomas in eyes with retinitis pigmentosa without high myopia. Retina. https://doi.org/10.1097/IAE.0000000000002180

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost B. Jonas.

Ethics declarations

Interessenkonflikt

J.B. Jonas und S. Panda-Jonas sind Patentinhaber zusammen mit Biocompatibles UK Ltd. (Franham, Surrey, UK) (Titel: Treatment of eye diseases using encapsulated cells encoding and secreting neuroprotective factor and/or anti-angiogenic factor; Patent number: 20120263794); und Patentanmeldung (Titel: Agents for use in the therapeutic or prophylactic treatment of myopia or hyperopia; Europäische Patentanmeldung 15 000 771.4).

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonas, J.B., Panda-Jonas, S. Epidemiologie und Anatomie der Myopie. Ophthalmologe 116, 499–508 (2019). https://doi.org/10.1007/s00347-019-0858-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-019-0858-6

Schlüsselwörter

Keywords

Navigation