Skip to main content
Log in

Pathogenese und Epidemiologie der neurotrophen Keratopathie

Pathogenesis and epidemiology of neurotrophic keratopathy

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die neurotrophe Keratopathie (NK) ist eine degenerative Hornhauterkrankung, die auf einer Beeinträchtigung der kornealen Innervation beruht. Die Schädigung der sensiblen Innervation, die durch den 1. Ast des N. trigeminus (N. ophthalmicus) erfolgt, kann über die gesamte Länge des Nervenverlaufs erfolgen, ausgehend vom Kern im Hirnstamm z. B. durch einen Hirntumor, bis hin zu den terminalen Nervenfasern in der Kornea, z. B. verursacht durch refraktive Hornhautchirurgie (z. B. Laser-in-situ-Keratomileusis [LASIK]). Bedingt durch den Verlust der sensiblen Innervation kommt es zu einer verminderten Tränensekretion und einer Reduktion in der Ausschüttung trophischer Faktoren. Dieses wiederum inhibiert das Regenerationspotenzial des kornealen Epithels. Die Reduktion bzw. der Verlust der Tränensekretion gepaart mit dem verschlechterten Regenerationspotenzial der Epithelzellen kann in schwersten Fällen der Erkrankung zu persistierenden Epitheldefekten, Ulzera bis hin zur Perforation der Hornhaut führen. Die NK weist eine Prävalenz von 5 oder weniger Betroffenen pro 10.000 auf und wird als seltene/Orphan-Erkrankung (ORPHA137596) eingestuft. Ein grundlegendes Verständnis der Pathogenese und Epidemiologie der NK unterstützt eine frühzeitige Diagnose und damit die Einleitung einer spezifischen Therapie.

Abstract

Neurotrophic keratopathy (NK) is a degenerative corneal disease that is based on an impairment of the corneal innervation. The damage to the sensory innervation, which is delivered through the 1st branch of the trigeminal nerve (ophthalmic nerve), can occur throughout the entire length of the nerve from the nucleus in the brainstem, e.g. caused by brain tumors, to the terminal nerve fibers in the cornea, caused for example by refractive corneal surgery (e. g. LASIK). Due to the loss of the sensory innervation, a reduced lacrimation and a reduction in the secretion of trophic factors occur. This in turn inhibits the regeneration potential of the corneal epithelium. In the most severe cases of the disease, the reduction or loss of lacrimation, together with the impaired regeneration potential of the epithelial cells, can lead to persistent epithelial defects, ulcers and corneal perforation. The NK has a prevalence of 5 or fewer individuals per 10,000 and is classified as a rare, i. e. orphan disease (ORPHA137596). A fundamental understanding of the pathogenesis and epidemiology of NK supports the early diagnosis and therefore the initiation of a specific treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Beuerman RW, Schimmelpfennig B (1980) Sensory denervation of the rabbit cornea affects epithelial properties. Exp Neurol 69(1):196–201

    CAS  PubMed  Google Scholar 

  2. Heigle TJ, Pflugfelder SC (1996) Aqueous tear production in patients with neurotrophic keratitis. Cornea 15(2):135–138

    CAS  PubMed  Google Scholar 

  3. Nishida T et al (2012) Differential contributions of impaired corneal sensitivity and reduced tear secretion to corneal epithelial disorders. Jpn J Ophthalmol 56(1):20–25

    PubMed  Google Scholar 

  4. Hovanesian JA, Shah SS, Maloney RK (2001) Symptoms of dry eye and recurrent erosion syndrome after refractive surgery. J Cataract Refract Surg 27(4):577–584

    CAS  PubMed  Google Scholar 

  5. Lee BH et al (2002) Reinnervation in the cornea after LASIK. Invest Ophthalmol Vis Sci 43(12):3660–3664

    PubMed  Google Scholar 

  6. Hamrah P et al (2010) Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology 117(10):1930–1936

    PubMed  PubMed Central  Google Scholar 

  7. Cocho L et al (2015) Gene Expression-Based Predictive Models of Graft Versus Host Disease-Associated Dry Eye. Invest Ophthalmol Vis Sci 56(8):4570–4581

    PubMed  Google Scholar 

  8. Steger B et al (2015) In vivo confocal microscopic characterisation of the cornea in chronic graft-versus-host disease related severe dry eye disease. Br J Ophthalmol 99(2):160–165

    CAS  PubMed  Google Scholar 

  9. Bonini S et al (2003) Neurotrophic keratitis. Eye (Lond) 17(8):989–995

    CAS  Google Scholar 

  10. Rozsa AJ, Beuerman RW (1982) Density and organization of free nerve endings in the corneal epithelium of the rabbit. Pain 14(2):105–120

    CAS  PubMed  Google Scholar 

  11. Wells JR, Michelson MA, (2008) Diagnosing and Treating Neurotrophic Keratopathy. EyeNet Magazine. American Academy of Ophthalmology. https://www.aao.org/eyenet/article/diagnosing-treating-neurotrophic-keratopathy Accessed date: 13 September 2018

  12. Mannis MJ, Holland EJ (2016) Cornea E‑Book. Elsevier, Amsterdam

    Google Scholar 

  13. Mantelli F et al (2015) Congenital corneal anesthesia and neurotrophic keratitis: diagnosis and management. Biomed Res Int 2015:805876

    PubMed  PubMed Central  Google Scholar 

  14. Semeraro F et al (2014) Neurotrophic keratitis. Ophthalmologica 231(4):191–197

    CAS  PubMed  Google Scholar 

  15. Ruskell GL (1974) Ocular fibres of the maxillary nerve in monkeys. J Anat 118(2):195–203

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gray H (1918) [1825–1861] Anatomy of the Human Body. Lea & Febiger, Philadelphia

  17. Launay PS et al (2015) Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion. Exp Eye Res 139:136–143

    CAS  PubMed  Google Scholar 

  18. Muller LJ et al (2003) Corneal nerves: structure, contents and function. Exp Eye Res 76(5):521–542

    CAS  PubMed  Google Scholar 

  19. Marfurt CF et al (2010) Anatomy of the human corneal innervation. Exp Eye Res 90(4):478–492

    CAS  PubMed  Google Scholar 

  20. Muller LJ, Pels E, Vrensen GF (2001) The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol 85(4):437–443

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Muller LJ, Pels L, Vrensen GF (1996) Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci 37(4):476–488

    CAS  PubMed  Google Scholar 

  22. ten Tusscher MP, Klooster J, Vrensen GF (1988) The innervation of the rabbit’s anterior eye segment: a retrograde tracing study. Exp Eye Res 46(5):717–730

    PubMed  Google Scholar 

  23. Wolter JR (1957) Innervation of the corneal endothelium of the eye of the rabbit. AMA Arch Ophthalmol 58(2):246–250

    CAS  PubMed  Google Scholar 

  24. Yamaguchi TZA, Menelau Cavalcanti B, Harris DL, von Andrian U, Jurkunas U, Hamrah P (2014) Neurogenic homeostasis of corneal endothelial cells: peripheral innervation maintains endothelial cell survival through vasoactive intestinal peptide. Invest Ophthalmol Vis Sci 55(13):2077

    Google Scholar 

  25. Al-Aqaba MA et al (2010) Architecture and distribution of human corneal nerves. Br J Ophthalmol 94(6):784–789

    PubMed  Google Scholar 

  26. Schimmelpfennig B (1982) Nerve structures in human central corneal epithelium. Graefes Arch Clin Exp Ophthalmol 218(1):14–20

    CAS  PubMed  Google Scholar 

  27. Stepp MA et al (2017) Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves. Glia 65(6):851–863

    PubMed  Google Scholar 

  28. Muller LJ et al (1997) Architecture of human corneal nerves. Invest Ophthalmol Vis Sci 38(5):985–994

    CAS  PubMed  Google Scholar 

  29. Belmonte C, Acosta MC, Gallar J (2004) Neural basis of sensation in intact and injured corneas. Exp Eye Res 78(3):513–525

    CAS  PubMed  Google Scholar 

  30. Acosta MC et al (2004) Tear secretion induced by selective stimulation of corneal and conjunctival sensory nerve fibers. Invest Ophthalmol Vis Sci 45(7):2333–2336

    PubMed  Google Scholar 

  31. Parra A et al (2010) Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 16(12):1396–1399

    CAS  PubMed  Google Scholar 

  32. Belmonte C et al (2015) What causes eye pain? Curr Ophthalmol Rep 3(2):111–121

    PubMed  PubMed Central  Google Scholar 

  33. Kovacs I et al (2016) Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease. Pain 157(2):399–417

    CAS  PubMed  Google Scholar 

  34. Di G et al (2017) Corneal epithelium-derived neurotrophic factors promote nerve regeneration. Invest Ophthalmol Vis Sci 58(11):4695–4702

    CAS  PubMed  Google Scholar 

  35. You L, Kruse FE, Volcker HE (2000) Neurotrophic factors in the human cornea. Invest Ophthalmol Vis Sci 41(3):692–702

    CAS  PubMed  Google Scholar 

  36. Qi H et al (2008) Expression of glial cell-derived neurotrophic factor and its receptor in the stem-cell-containing human limbal epithelium. Br J Ophthalmol 92(9):1269–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mastropasqua L et al (2017) Understanding the pathogenesis of neurotrophic keratitis: the role of corneal nerves. J Cell Physiol 232(4):717–724

    CAS  PubMed  Google Scholar 

  38. Kruse FE, Tseng SC (1993) Growth factors modulate clonal growth and differentiation of cultured rabbit limbal and corneal epithelium. Invest Ophthalmol Vis Sci 34(6):1963–1976

    CAS  PubMed  Google Scholar 

  39. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162

    CAS  PubMed  Google Scholar 

  40. Lambiase A et al (2000) Nerve growth factor promotes corneal healing: structural, biochemical, and molecular analyses of rat and human corneas. Invest Ophthalmol Vis Sci 41(5):1063–1069

    CAS  PubMed  Google Scholar 

  41. Sarkar J et al (2013) CD11b+GR1+ myeloid cells secrete NGF and promote trigeminal ganglion neurite growth: implications for corneal nerve regeneration. Invest Ophthalmol Vis Sci 54(9):5920–5936

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsuyama A et al (2017) Effect of nerve growth factor on innervation of perivascular nerves in neovasculatures of mouse cornea. Biol Pharm Bull 40(4):396–401

    CAS  PubMed  Google Scholar 

  43. Rabiolo AWM (2017) Neurotrophic keratitis. American Academy of Ophthalmology, Eye Wiki. http://eyewiki.aao.org/Neurotrophic_Keratitis

    Google Scholar 

  44. DEWS Definition and Classification Subcommittee (2007) The definition and classification of dry eye disease: report of the definition and classification subcommittee of the international dry eye workshop. Ocul Surf 5(2):75–92

    Google Scholar 

  45. Gabison EES, Doan S, Cochereau I (2018) Epidemiology of neurotrophic keratitis: prevalence, etiologies, outcomes and clinical management. Invest Ophthalmol Vis Sci 59(9):1800

    Google Scholar 

  46. Alder JS, Geerling G (2018) Incidence of neurotrophic keratopathy in a German cohort of persistent epithelial defects. Invest Ophthalmol Vis Sci 59(9):1801

    Google Scholar 

  47. Sacchetti M, Lambiase A (2014) Diagnosis and management of neurotrophic keratitis. Clin Ophthalmol 8:571–579

    PubMed  PubMed Central  Google Scholar 

  48. Labetoulle M et al (2005) Incidence of herpes simplex virus keratitis in France. Ophthalmology 112(5):888–895

    CAS  PubMed  Google Scholar 

  49. Dworkin RH et al (2007) Recommendations for the management of herpes zoster. Clin Infect Dis 44(Suppl 1):S1–S26

    CAS  PubMed  Google Scholar 

  50. Bhatti MT, Patel R (2005) Neuro-ophthalmic considerations in trigeminal neuralgia and its surgical treatment. Curr Opin Ophthalmol 16(6):334–340

    PubMed  Google Scholar 

  51. Albietz JM, Lenton LM, McLennan SG (2005) Dry eye after LASIK: comparison of outcomes for Asian and Caucasian eyes. Clin Exp Optom 88(2):89–96

    PubMed  Google Scholar 

  52. Azuma M et al (2014) Dry eye in LASIK patients. Bmc Res Notes 7:420

    PubMed  PubMed Central  Google Scholar 

  53. Belmonte C, Gallar J (2011) Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations. Invest Ophthalmol Vis Sci 52(6):3888–3892

    PubMed  Google Scholar 

  54. Alper MG (1975) The anesthetic eye: an investigation of changes in the anterior ocular segment of the monkey caused by interrupting the trigeminal nerve at various levels along its course. Trans Am Ophthalmol Soc 73:323–365

    CAS  PubMed  Google Scholar 

  55. Araki K et al (1994) Epithelial wound healing in the denervated cornea. Curr Eye Res 13(3):203–211

    CAS  PubMed  Google Scholar 

  56. Dhillon VK et al (2016) Corneal hypoesthesia with normal sub-basal nerve density following surgery for trigeminal neuralgia. Acta Ophthalmol 94(1):e6–10

    PubMed  Google Scholar 

  57. Sacchetti M, Lambiase A (2017) Neurotrophic factors and corneal nerve regeneration. Neural Regen Res 12(8):1220–1224

    PubMed  PubMed Central  Google Scholar 

  58. Chen L et al (2014) Nerve growth factor expression and nerve regeneration in monkey corneas after LASIK. J Refract Surg 30(2):134–139

    CAS  PubMed  Google Scholar 

  59. Park JH et al (2016) Nerve growth factor attenuates apoptosis and inflammation in the diabetic cornea. Invest Ophthalmol Vis Sci 57(15):6767–6775

    CAS  PubMed  Google Scholar 

  60. Hodges RR, Dartt DA (2013) Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res 117:62–78

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilson SE, Ambrosio R (2001) Laser in situ keratomileusis-induced neurotrophic epitheliopathy. Am J Ophthalmol 132(3):405–406

    CAS  PubMed  Google Scholar 

  62. Lin X et al (2014) Comparison of deep anterior lamellar keratoplasty and penetrating keratoplasty with respect to postoperative corneal sensitivity and tear film function. Graefes Arch Clin Exp Ophthalmol 252(11):1779–1787

    PubMed  Google Scholar 

  63. Wasilewski D, Mello GH, Moreira H (2013) Impact of collagen crosslinking on corneal sensitivity in keratoconus patients. Cornea 32(7):899–902

    PubMed  Google Scholar 

  64. Tinley CG, Gray RH (2009) Routine, single session, indirect laser for proliferative diabetic retinopathy. Eye (Lond) 23(9):1819–1823

    CAS  Google Scholar 

  65. Geerling G, Lisch W, Finis D (2018) Rezidivierende Hornhauterosion bei epithelialen Hornhautdystrophien. Klin Monatsbl Augenheilkd 06(235):697–701

    Google Scholar 

  66. Hamrah P et al (2013) Unilateral herpes zoster ophthalmicus results in bilateral corneal nerve alteration: an in vivo confocal microscopy study. Ophthalmology 120(1):40–47

    PubMed  Google Scholar 

  67. Moein HR et al (2018) Corneal nerve regeneration after herpes simplex keratitis: a longitudinal in vivo confocal microscopy study. Ocul Surf 16(2):218–225

    PubMed  Google Scholar 

  68. Rousseau A et al (2015) Diffusion tensor magnetic resonance imaging of trigeminal nerves in relapsing herpetic keratouveitis. PLoS ONE 10(4):e122186

    PubMed  PubMed Central  Google Scholar 

  69. M’Garrech M et al (2013) Impairment of lacrimal secretion in the unaffected fellow eye of patients with recurrent unilateral herpetic keratitis. Ophthalmology 120(10):1959–1967

    PubMed  Google Scholar 

  70. Jabbarvand M et al (2015) Do unilateral herpetic stromal keratitis and neurotrophic ulcers cause bilateral dry eye? Cornea 34(7):768–772

    PubMed  Google Scholar 

  71. Yamaguchi T et al (2013) Bilateral nerve alterations in a unilateral experimental neurotrophic keratopathy model: a lateral conjunctival approach for trigeminal axotomy. PLoS ONE 8(8). https://doi.org/10.1371/journal.pone.0070908

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yamaguchi T, Hamrah P, Shimazaki J (2016) Bilateral alterations in corneal nerves, dendritic cells, and tear cytokine levels in ocular surface disease. Cornea 35:S65–S70

    PubMed  PubMed Central  Google Scholar 

  73. Dua HS et al (2018) Neurotrophic keratopathy. Prog Retin Eye Res 66:107–131. https://doi.org/10.1016/j.preteyeres.2018.04.003

    Article  PubMed  Google Scholar 

  74. Bucher F et al (2014) Corneal nerve alterations in different stages of Fuchs’ endothelial corneal dystrophy: an in vivo confocal microscopy study. Graefes Arch Clin Exp Ophthalmol 252(7):1119–1126

    PubMed  Google Scholar 

  75. Ahuja Y et al (2012) Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial dystrophy. Cornea 31(11):1257–1263

    PubMed  PubMed Central  Google Scholar 

  76. Schrems-Hoesl LM et al (2013) Cellular and subbasal nerve alterations in early stage Fuchs’ endothelial corneal dystrophy: an in vivo confocal microscopy study. Eye (Lond) 27(1):42–49

    CAS  Google Scholar 

  77. Bonzano C et al (2018) A case of neurotrophic keratopathy concomitant to brain metastasis. Cureus 10(e2309):3

    Google Scholar 

  78. Puca A et al (1995) Evaluation of fifth nerve dysfunction in 136 patients with middle and posterior cranial fossae tumors. Eur Neurol 35(1):33–37

    CAS  PubMed  Google Scholar 

  79. Lockwood A, Hope-Ross M, Chell P (2006) Neurotrophic keratopathy and diabetes mellitus. Eye (Lond) 20(7):837–839

    CAS  Google Scholar 

  80. O’Connor AB et al (2008) Pain associated with multiple sclerosis: systematic review and proposed classification. Pain 137(1):96–111

    PubMed  Google Scholar 

  81. Messmer EM et al (2010) In vivo confocal microscopy of corneal small fiber damage in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 248(9):1307–1312

    PubMed  Google Scholar 

  82. Sekhar GC et al (1994) Ocular manifestations of Hansen’s disease. Doc Ophthalmol 87(3):211–221

    CAS  PubMed  Google Scholar 

  83. Ambrosio R Jr., Tervo T, Wilson SE (2008) LASIK-associated dry eye and neurotrophic epitheliopathy: pathophysiology and strategies for prevention and treatment. J Refract Surg 24(4):396–407

    PubMed  Google Scholar 

  84. Calvillo MP et al (2004) Corneal reinnervation after LASIK: prospective 3‑year longitudinal study. Invest Ophthalmol Vis Sci 45(11):3991–3996

    PubMed  Google Scholar 

  85. Chao C et al (2015) Structural and functional changes in corneal innervation after laser in situ keratomileusis and their relationship with dry eye. Graefes Arch Clin Exp Ophthalmol 253(11):2029–2039

    PubMed  Google Scholar 

  86. Mohamed-Noriega K et al (2014) Early corneal nerve damage and recovery following small incision lenticule extraction (SMILE) and laser in situ keratomileusis (LASIK). Invest Ophthalmol Vis Sci 55(3):1823–1834

    PubMed  Google Scholar 

  87. Tervo T et al (1985) Histochemical evidence of limited reinnervation of human corneal grafts. Acta Ophthalmol (copenh) 63(2):207–214

    CAS  Google Scholar 

  88. Richter A et al (1996) Corneal reinnervation following penetrating keratoplasty—correlation of esthesiometry and confocal microscopy. Ger J Ophthalmol 5(6):513–517

    CAS  PubMed  Google Scholar 

  89. Patel SV et al (2007) Keratocyte and subbasal nerve density after penetrating keratoplasty. Trans Am Ophthalmol Soc 105:180–189 (discussion 189–90.)

    PubMed  PubMed Central  Google Scholar 

  90. Patel SV et al (2007) Keratocyte density and recovery of subbasal nerves after penetrating keratoplasty and in late endothelial failure. Arch Ophthalmol 125(12):1693–1698

    PubMed  Google Scholar 

  91. Baudouin C et al (2013) Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf 11(4):246–258

    PubMed  Google Scholar 

  92. Geerling G et al (2001) Toxicity of natural tear substitutes in a fully defined culture model of human corneal epithelial cells. Invest Ophthalmol Vis Sci 42(5):948–956

    CAS  PubMed  Google Scholar 

  93. Sarkar J et al (2012) Corneal neurotoxicity due to topical benzalkonium chloride. Invest Ophthalmol Vis Sci 53(4):1792–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Martone G et al (2009) An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology. Am J Ophthalmol 147(4):725–735 (e1)

    PubMed  Google Scholar 

  95. Nagai N et al (2010) Comparison of corneal wound healing rates after instillation of commercially available latanoprost and travoprost in rat debrided corneal epithelium. J Oleo Sci 59(3):135–141

    CAS  PubMed  Google Scholar 

  96. Sharma C et al (2011) Effect of fluoroquinolones on the expression of matrix metalloproteinase in debrided cornea of rats. Toxicol Mech Methods 21(1):6–12

    CAS  PubMed  Google Scholar 

  97. Baratz KH et al (2006) Effects of glaucoma medications on corneal endothelium, keratocytes, and subbasal nerves among participants in the ocular hypertension treatment study. Cornea 25(9):1046–1052

    PubMed  Google Scholar 

  98. Pflugfelder SC et al (2005) Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am J Pathol 166(1):61–71

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mertsch.

Ethics declarations

Interessenkonflikt

S. Mertsch und J. Alder geben an, dass kein Interessenkonflikt besteht. H.S. Dua und G. Geerling geben Tätigkeiten als Berater und Vortragende für Dompé Farmaceutici an. G. Geerling hat Mittel für die Durchführung eines selbst initiierten Forschungsprojektes von Dompé Farmaceutici erhalten.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mertsch, S., Alder, J., Dua, H.S. et al. Pathogenese und Epidemiologie der neurotrophen Keratopathie. Ophthalmologe 116, 109–119 (2019). https://doi.org/10.1007/s00347-018-0823-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-018-0823-9

Schlüsselwörter

Keywords

Navigation