Skip to main content
Log in

In-vivo-Imaging retinaler Zellapoptose nach akuter Lichtexposition

In vivo imaging of retinal cell apoptosis following acute light exposure

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bisher war der Nachweis von retinaler Apoptose in der äußeren Körnerschicht nach akuter Lichtexposition auf histologische Untersuchungen [12] beschränkt. In dieser Studie untersuchen wir, ob programmierter Zelltod mittels der DARC-Technik (Detection-of-Apoptosing-Retinal-Cells-Technik) in vivo dargestellt werden kann.

Methoden

Die Augen von schwarzen Agouti-Ratten wurden mit blauem Licht (λ=405 nm; 3,2 mW/cm2) über 2 h bestrahlt. In-vivo-Imaging mittels konfokaler Scanning-Laser-Ophthalmoskopie wurde vor und direkt nach Lichtexposition sowie 24 h nach Dunkeladaptation durchgeführt. Anschließend wurde die Entwicklung von retinaler Zellapoptose unter Einsatz der DARC-Technik nach intravitrealer Gabe von fluoreszenzmarkiertem Annexin 5 untersucht.

Ergebnisse

Direkt nach Lichtexposition waren keine pathologischen Veränderungen durch In-vivo-Imaging zu erkennen. Hingegen wurde eine Netzhautverdünnung und die Entwicklung von retinaler Zellapoptose nach Dunkeladaptation einen Tag später im Bereich des vorher bestrahlten Areals nachgewiesen. Mittels konfokalem Live-Scanning durch die bestrahlte Netzhaut wurden die hyperfluoreszenten apoptotischen Zellen in der äußeren Netzhaut lokalisiert. Histologische Untersuchungen bestätigten die Entwicklung von Photorezeptorapoptose und Zellschäden im Bereich der äußeren Netzhaut.

Diskussion

Die DARC-Technik erlaubt die In-vivo-Darstellung von Photorezeptorzellapoptose in der äußeren Netzhaut. Hiermit eröffnen sich neue, vielsprechende Möglichkeiten zur Untersuchung des programmierten Photorezeptorzelltods, welcher bisher nur post mortem nachgewiesen werden konnte.

Abstract

Purpose

Outer nuclear apoptosis following acute light exposure has previously only been shown histologically. This study investigated whether in vivo detection with DARC (detection of apoptosing retinal cells) technology could identify cells undergoing apoptosis.

Methods

Acute blue light damage (λ=405 nm; 3.2 mW/cm2) was applied to eyes of dark Agouti rats over 2 h. In vivo retinal imaging using confocal scanning laser ophthalmoscopy was performed before and directly after light exposure as well as after 24 h of dark adaptation. Development of retinal cell apoptosis was then assessed using intravitreal fluorescent-labeled annexin-5 with DARC technology in vivo.

Results

Directly after light exposure, no pathological retinal changes were observed by in vivo imaging. However, retinal flattening and the development of apoptosis within the irradiated retina occurred 1 day later and following dark adaptation. Confocal live scanning through the exposed retina revealed hyperfluorescent apoptotic cells at the level of the outer retina. Histological analysis confirmed the occurrence of photoreceptor cell death and the development of cellular damage at the outer retina.

Discussion

This study confirms acute light-induced outer nuclear apoptosis using in vivo DARC technology. This may open new and promising ways to assess programmed cell death of the photoreceptor cells, which – until now – was possible only with postmortem analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Arroyo JG, Yang L, Bula D, Chen DF (2005) Photoreceptor apoptosis in human retinal detachment. Am J Ophthalmol 139:605–610

    Article  PubMed  Google Scholar 

  2. Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102:783–791

    Article  CAS  PubMed  Google Scholar 

  3. Bellmann C, Holz FG, Schapp O et al (1997) Topography of fundus autofluorescence with a new confocal scanning laser ophthalmoscope. Ophthalmologe 94:385–391

    Article  CAS  PubMed  Google Scholar 

  4. Boersma HH, Kietselaer BL, Stolk LM et al (2005) Past, present and future of annexin A5: From protein discovery to clinical applications. J Nucl Med 46:2035–2050

    CAS  PubMed  Google Scholar 

  5. Bush RA, Reme CE, Malnoe A (1991) Light damage in the rat retina: The effect of dietary deprivation of N-3 fatty acids on acute structural alterations. Exp Eye Res 53:741–752

    Article  CAS  PubMed  Google Scholar 

  6. Chang GQ, Hao Y, Wong F (1993) Apoptosis: Final common pathway of photoreceptor death in rd, rds and rhodopsin mutant mice. Neuron 11:595–605

    Article  CAS  PubMed  Google Scholar 

  7. Cideciyan AV, Swider M, Aleman TS et al (2005) ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Invest Ophthalmol Vis Sci 46:4739–4746

    Article  PubMed  Google Scholar 

  8. Cook B, Lewis GP, Fisher SK, Adler R (1995) Apoptotic photoreceptor degeneration in experimental retinal detachment. Invest Ophthalmol Vis Sci 36:990–996

    CAS  PubMed  Google Scholar 

  9. Cordeiro MF, Guo L, Luong V et al (2004) Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A 101:13352–13356

    Article  CAS  PubMed  Google Scholar 

  10. Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442

    PubMed  Google Scholar 

  11. Ferrington DA, Tran TN, Lew KL et al (2006) Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells. Exp Eye Res 83:638–650

    Article  CAS  PubMed  Google Scholar 

  12. Grimm C, Wenzel A, Williams T et al (2001) Rhodopsin-mediated blue-light damage to the rat retina: Effect of photoreversal of bleaching. Invest Ophthalmol Vis Sci 42:497–505

    CAS  PubMed  Google Scholar 

  13. Guo L, Salt TE, Maass A et al (2006) Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci 47:626–633

    Article  PubMed  Google Scholar 

  14. Guo L, Salt TE, Luong V et al (2007) Targeting amyloid-{beta} in glaucoma treatment. Proc Natl Acad Sci U S A 104:13444–13449

    Article  CAS  PubMed  Google Scholar 

  15. Harada T, Harada C, Nakayama N et al (2000) Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 26:533–541

    Article  CAS  PubMed  Google Scholar 

  16. Holz FG, Schmitz-Valckenberg S, Spaide RF, Bird AC (2007) Atlas of fundus autofluorescence imaging. Springer, Berlin

  17. Kerr JN, Denk W (2008) Imaging in vivo: Watching the brain in action. Nat Rev Neurosci 9:195–205

    Article  CAS  PubMed  Google Scholar 

  18. Luker GD, Luker KE (2008) Optical imaging: Current applications and future directions. J Nucl Med 49:1–4

    Article  PubMed  Google Scholar 

  19. Maass A, Lundt von Leithner P, Luong V et al (2007) Assessment of rant and mouse RGC apoptosis imaging in-vivo with different scanning laser ophthalmoscopes. Curr Eye Res 32:851–861

    Article  PubMed  Google Scholar 

  20. Morgan JI, Hunter JJ, Masella B et al (2008) Light-induced retinal changes observed using high-resolution autofluorescence imaging of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 49:3715–3729

    Article  PubMed  Google Scholar 

  21. Nakazawa T, Hisatomi T, Nakazawa C et al (2007) Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 104:2425–2430

    Article  CAS  PubMed  Google Scholar 

  22. Noell WK (1980) Possible mechanisms of photoreceptor damage by light in mammalian eyes. Vision Res 20:1163–1171

    Article  CAS  PubMed  Google Scholar 

  23. Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol Vis Sci 5:450–473

    CAS  Google Scholar 

  24. Perche O, Doly M, Ranchon-Cole I (2007) Caspase-dependent apoptosis in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 48:2753–2759

    Article  PubMed  Google Scholar 

  25. Portera-Cailliau C, Sung CH, Nathans J, Adler R (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A 91:974–978

    Article  CAS  PubMed  Google Scholar 

  26. Rapp LM, Williams TP (1979) Damage to the albino rat retina produced by low intensity light. Photochem Photobiol 29:731–733

    Article  CAS  PubMed  Google Scholar 

  27. Rapp LM, Williams TP (1980) The role of ocular pigmentation in protecting against retinal light damage. Vision Res 20:1127–1131

    Article  CAS  PubMed  Google Scholar 

  28. Reme C, Federspiel-Eisenring E, Hoppeler T et al (1988) Chronic lithium damages the rat reitna, acute light exposure potentiates the effect. Clin Vision Sci 3:157–172

    Google Scholar 

  29. Reme CE, Grimm C, Hafezi F et al (1998) Apoptotic cell death in retinal degenerations. Prog Retin Eye Res 17:443–464

    Article  CAS  PubMed  Google Scholar 

  30. Sanges D, Comitato A, Tammaro R, Marigo V (2006) Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proc Natl Acad Sci U S A 103:17366–17371

    Article  CAS  PubMed  Google Scholar 

  31. Schmitz-Valckenberg S, Guo L, Maass A et al (2008) Real-time in-vivo imaging of retinal cell apoptosis after laser exposure. Invest Ophthalmol Vis Sci 49:2773–2780

    Article  PubMed  Google Scholar 

  32. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    CAS  PubMed  Google Scholar 

  33. Suter M, Reme C, Grimm C et al (2000) Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–39630

    Article  CAS  PubMed  Google Scholar 

  34. von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412

    Article  Google Scholar 

  35. Webb RH, Hughes GW, Delori FC (1987) Confocal scanning laser ophthalmoscope. Appl Opt 26:1492–1499

    Article  Google Scholar 

  36. Weber WA, Grosu AL, Czernin J (2008) Technology insight: Advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 5:160–170

    Article  CAS  PubMed  Google Scholar 

  37. Weissleder R (1999) Molecular imaging: Exploring the next frontier. Radiology 212:609–614

    CAS  PubMed  Google Scholar 

  38. Wenzel A, Grimm C, Samardzija M, Reme CE (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24:275–306

    Article  CAS  PubMed  Google Scholar 

  39. Zhao M, Beauregard DA, Loizou L et al (2007) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature Med 7:1241–1244

    Google Scholar 

  40. Blankenberg FG, Strauss HW (2001) Will imaging of apoptosis play a role in clinical care? A tale of mice and men. Apoptosis 6:117–123

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Dr. Anthony Vugler, Dr. Carlos Gias und Vy Luong für wissenschaftliche und technische Unterstützung.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schmitz-Valckenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz-Valckenberg, S., Guo, L., Cheung, W. et al. In-vivo-Imaging retinaler Zellapoptose nach akuter Lichtexposition. Ophthalmologe 107, 22–29 (2010). https://doi.org/10.1007/s00347-009-1952-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-009-1952-y

Stichwörter

Keywords

Navigation