Skip to main content
Log in

Limbale Stammzellinsuffizienz nach Verätzung

Untersuchungen zum epithelialen Phänotyp und Entzündungsstatus

Limbal stem cell deficiency after chemical burns

Investigations on the epithelial phenotype and inflammation status

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die limbale Stammzellinsuffizienz (LSZI) ist klinisch durch die Bildung eines fibrovasculären Pannus auf der Hornhautoberfläche, chronische Entzündung und Visusverlust gekennzeichnet. Ziel der Studie war es, das Pannusgewebe zu charakterisieren. Aus dem Pannusgewebe bei LSZI aufgrund einer Verätzung wurden die RNS (n=6) und Gesamtproteine (n=3) isoliert. Normale Horn- und Bindehaut (jeweils n=6) dienten als Kontrollgewebe. Die Expression von Markern zur Bestimmung des epithelialen Ursprungs (Keratin 3, K3; Keratin 19, K19; Mucin 5AC, MUC5AC), Entzündungsmarkern (Interleukin-1β, IL-1β; „intercellular adhesion molecule 1“, ICAM-1) und „vascular endothelial growth factor“ (VEGF) wurde mittels Western Blotting und/oder Real-Time-PCR untersucht. Normale Hornhaut zeigte eine höhere Expression von K3, aber eine geringere Expression von K19 und MUC5AC, die charakteristischerweise in der Bindehaut zu finden sind. Die Entzündungsmarker waren in der Bindehaut stärker exprimiert als in der Hornhaut. Das untersuchte Pannusgewebe zeigte eine ähnliche Expression von Gewebemarkern wie die normale Bindehaut, aber eine höhere Expression der meisten Entzündungsmarker als bei beiden Kontrollgeweben. Das Pannusgewebe bei LSZI ist durch einen bindehautähnlichen Phänotyp und eine chronische Entzündung charakterisiert.

Abstract

Limbal stem cell deficiency (LSCD) is clinically characterized by growth of fibrovascular pannus onto the corneal surface, chronic inflammation and impaired visual acuity. The aim of this study was to characterize the pannus tissue. Total RNA was isolated from six pannus samples and protein from three pannus samples from patients with LSCD caused by chemical burns. Normal human corneal tissue (n=6) and conjunctiva (n=6) were used as control tissues. The expression of the epithelial lineage markers keratin 3 (K3), K19 and MUC5AC, the inflammatory markers IL-1β, ICAM-1 and VEGF was analyzed by Western Blotting and/or real-time PCR. Normal corneal tissue had a higher expression of K3 and a lower expression of K19 and MUC5AC in comparison to normal conjunctiva. A higher expression of inflammatory markers was seen in conjunctiva compared to corneal tissue. The pannus tissue showed a similar expression of lineage markers to conjunctiva but a higher expression of most inflammatory markers as compared to both control tissues. The analyzed samples of pannus in LSCD resembled conjunctiva and not cornea and showed a high expression of inflammatory markers indicating chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Bara J, Chastre E, Mahiou J et al (1998) Gastric M1 mucin, an early oncofetal marker of colon carcinogenesis, is encoded by the MUC5AC gene. Int J Cancer 75:767–773

    Article  CAS  PubMed  Google Scholar 

  2. Becker J, Salla S, Dohmen U et al (1995) Explorative study of interleukin levels in the human cornea. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 233:766–771

  3. Biswas DK, Shi Q, Baily S et al (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 101:10137–10142

    Article  CAS  PubMed  Google Scholar 

  4. Chang JH, Gabison EE, Kato T et al (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249

    Article  CAS  PubMed  Google Scholar 

  5. Gorrini C, Squatrito M, Luise C et al (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448:1063–1067

    Article  CAS  PubMed  Google Scholar 

  6. Holland EJ, Schwartz GS (1996) The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea 15:549–556

    Article  CAS  PubMed  Google Scholar 

  7. Kawashima M, Kawakita T, Satake Y et al (2007) Phenotypic study after cultivated limbal epithelial transplantation for limbal stem cell deficiency. Arch Ophthalmol 125:1337–1344

    Article  PubMed  Google Scholar 

  8. Li DQ, Chen Z, Song XJ et al (2004) Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci 45:4302–4311

    Article  PubMed  Google Scholar 

  9. Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86:463–471

    Article  CAS  PubMed  Google Scholar 

  10. Meller D et al. (2008) IOVS 49:ARVO E-abstract 5716

  11. Philipp W, Gottinger W (1993) Leukocyte adhesion molecules in diseased corneas. Invest Ophthalmol Vis Sci 34:2449–2459

    CAS  PubMed  Google Scholar 

  12. Sangwan VS, Matalia HP, Vemuganti GK et al (2006) Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 54:29–34

    Article  PubMed  Google Scholar 

  13. Santos MS, Gomes JA, Hofling-Lima AL et al (2005) Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140:223–230

    PubMed  Google Scholar 

  14. Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Article  CAS  PubMed  Google Scholar 

  15. Sotozono C, He J, Matsumoto Y et al (1997) Cytokine expression in the alkali-burned cornea. Curr Eye Res 16:670–676

    Article  CAS  PubMed  Google Scholar 

  16. Tsai RJ, LI Lm, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  CAS  PubMed  Google Scholar 

  17. Tseng SC, Prabhasawat P, Barton K et al (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    CAS  PubMed  Google Scholar 

  18. Wang DY, Hsueh YJ, Yang VC et al (2003) Propagation and phenotypic preservation of rabbit limbal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci 44:4698–4704

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Meller.

Additional information

Unterstützt mit Drittmitteln der estnischen Forschungsgemeinschaft (ETF Grant 5832), der Deutschen Ophthalmologischen Gesellschaft (DOG), der Deutschen Forschungsgemeinschaft (DFG, Bonn, ME 1623/3-1) und der Forschungsförderung AG Trockenes Auge (Berlin, Deutschland).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauklin, M., Steuhl, KP. & Meller, D. Limbale Stammzellinsuffizienz nach Verätzung. Ophthalmologe 106, 995–998 (2009). https://doi.org/10.1007/s00347-008-1898-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-008-1898-5

Schlüsselwörter

Keywords

Navigation