Skip to main content
Log in

Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft

Vom irregulären Astigmatismus zu Aberrationen höherer Ordnung – Teil II: Beispiele

Application of wavefront analysis in clinical and scientific settings

From irregular astigmatism to aberrations of a higher order – Part II: Examples

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Die Wellenfrontanalyse hat sich in den vergangenen Jahren von einer Laboranwendung zu einer ophthalmologischen Untersuchungsmethode entwickelt. Hierzu hat vor allem die weite Verbreitung der wellenfrontgeführten LASIK (Laser-in-situ-Keratomileusis) beigetragen. Dennoch ist die Aberrometrie noch kein klinisches Routineverfahren und die Interpretation der Ergebnisse für viele klinisch tätige Augenärzte noch ungewohnt. Der 2. Teil dieser Serie fasst bislang gesicherte, ophthalmologisch bedeutsame Erkenntnisse und aktuelle wissenschaftliche Anwendungen in diesem Bereich zusammen.

Abstract

In recent years, wavefront analysis has ceased to be purely a laboratory application and emerged as a method used in ophthalmological diagnosis. This development has been promoted mainly by the widespread use of wavefront-guided LASIK (laser in situ keratomileusis). However, aberrometry is still not a common diagnostic technique, and for many ophthalmologists interpretation of the results is difficult. The second part of this serial paper reviews findings that are relevant for the ophthalmological community and highlights current scientific applications in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16
Abb. 17
Abb. 18
Abb. 19

Literatur

  1. Amesbury EC,Schallhorn SC (2003) Contrast sensitivity and limits of vision. Int Ophthalmol Clin 43: 31–42

    PubMed  Google Scholar 

  2. Amsler M (1953) [On the problem of astigmatism associated with pterygium.] Zur Frage des pterygiumbedingten Astigmatismus. Ophthalmologica 126: 52–54

    Article  PubMed  CAS  Google Scholar 

  3. Applegate RA, Donnelly WJ 3rd, Marsack JD et al. (2007) Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging. J Opt Soc Am A Opt Image Sci Vis 24: 578–587

    Article  PubMed  Google Scholar 

  4. Applegate RA, Gansel KA (1990) The importance of pupil size in optical quality measurements following radial keratotomy. Refract Corneal Surg 6: 47–54

    PubMed  CAS  Google Scholar 

  5. Applegate RA, Hilmantel G, Howland HC et al. (2000) Corneal first surface optical aberrations and visual performance. J Refract Surg 16: 507–514

    PubMed  CAS  Google Scholar 

  6. Applegate RA, Howland HC (1997) Refractive surgery, optical aberrations, and visual performance. J Refract Surg 13: 295–299

    PubMed  CAS  Google Scholar 

  7. Applegate RA, Howland HC, Sharp RP et al. (1998) Corneal aberrations and visual performance after radial keratotomy. J Refract Surg 14: 397–407

    PubMed  CAS  Google Scholar 

  8. Applegate RA, Marsack JD, Thibos LN (2006) Metrics of retinal image quality predict visual performance in eyes with 20/17 or better visual acuity. Optom Vis Sci 83: 635–640

    Article  PubMed  Google Scholar 

  9. Applegate RA, Sarver EJ, Khemsara V (2002) Are all aberrations equal? J Refract Surg 18: S556–S562

    PubMed  Google Scholar 

  10. Ardjomand N, Hau S, McAlister JC et al. (2007) Quality of vision and graft thickness in deep anterior lamellar and penetrating corneal allografts. Am J Ophthalmol 143: 228–235

    Article  PubMed  Google Scholar 

  11. Artal P, Berrio E, Guirao A et al. (2002) Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis 19: 137–143

    Article  PubMed  Google Scholar 

  12. Artal P, Chen L, Fernandez EJ et al. (2003) Adaptive optics for vision: the eye’s adaptation to point spread function. J Refract Surg 19: S585–S587

    PubMed  Google Scholar 

  13. Becker KA (2006) Behandlung der Presbyopie. Ophthalmologe 103: 653–654

    Article  PubMed  CAS  Google Scholar 

  14. Bellucci R, Scialdone A, Buratto L et al. (2005) Visual acuity and contrast sensitivity comparison between Tecnis and AcrySof SA60AT intraocular lenses: A multicenter randomized study. J Cataract Refract Surg 31: 712–717

    Article  PubMed  Google Scholar 

  15. Bille JF, Harner CFH, Loesel F (2004) Aberration-Free Refractive Surgery: New Frontiers in Vision. Springer, Berlin Heidelberg New York

  16. Binder PS (1988) The effect of suture removal on postkeratoplasty astigmatism. Am J Ophthalmol 106: 507

    PubMed  CAS  Google Scholar 

  17. Bühren J, Kasper T, Terzi E et al. (2004) Aberrationen hoherer Ordnung nach Implantation einer irisgestützten Vorderkammerlinse (Ophtec Artisan) in das phake Auge. Ophthalmologe 101: 1194–1201

    Article  PubMed  Google Scholar 

  18. Bühren J, Kohnen T (2006) Factors affecting the change in lower-order and higher-order aberrations after wavefront-guided laser in situ keratomileusis for myopia with the Zyoptix 3.1 system. J Cataract Refract Surg 32: 1166–1174

    Article  PubMed  Google Scholar 

  19. Bühren J, Kühne C, Kohnen T (2005) Influence of pupil and optical zone diameter on higher-order aberrations after wavefront-guided myopic LASIK. J Cataract Refract Surg 31: 2272–2280

    Article  PubMed  Google Scholar 

  20. Bühren J, Kühne C, Kohnen T (2006) Wellenfrontanalyse zur Diagnose des subklinischen Keratokonus. Ophthalmologe 103: 783–790

    Article  PubMed  Google Scholar 

  21. Bühren J, Kühne C, Kohnen T (2007) Defining subclinical keratoconus using corneal first-surface higher-order aberrations. Am J Ophthalmol 143: 381–389

    Article  PubMed  Google Scholar 

  22. Bühren J, Strenger A, Martin T et al. (2007) Wellenfrontaberrationen und subjektive optische Qualität nach wellenfrontgeführter LASIK: Erste Ergebnisse. Ophthalmologe 104: 688–696

    Article  PubMed  Google Scholar 

  23. Bühren J, Yoon G, Kenner S et al. (20007) The effect of optical zone decentration on lower- and higher-order aberrations after photorefractive keratectomy (PRK) in a Cat Model. IOVS: (in press)

  24. Chalita MR, Chavala S, Xu M et al. (2004) Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. Ophthalmology 111: 447–453

    Article  PubMed  Google Scholar 

  25. Chandhrasri S, Knorz MC (2006) Comparison of higher order aberrations and contrast sensitivity after LASIK, Verisyse phakic IOL, and Array multifocal IOL. J Refract Surg 22: 231–236

    PubMed  Google Scholar 

  26. Charman WN (2005) Wavefront technology: past, present and future. Cont Lens Anterior Eye 28: 75–92

    Article  PubMed  CAS  Google Scholar 

  27. Chen L, Singer B, Guirao A et al. (2005) Image metrics for predicting subjective image quality. Optom Vis Sci 82: 358–369

    Article  PubMed  Google Scholar 

  28. Cheng X, Bradley A, Thibos LN (2004) Predicting subjective judgment of best focus with objective image quality metrics. J Vis 4: 310–321

    Article  PubMed  Google Scholar 

  29. Chung SH, Lee IS, Lee YG et al. (2006) Comparison of higher-order aberrations after wavefront-guided laser in situ keratomileusis and laser-assisted subepithelial keratectomy. J Cataract Refract Surg 32: 779–784

    Article  PubMed  Google Scholar 

  30. Denoyer A, Le Lez ML, Majzoub S et al. (2007) Quality of vision after cataract surgery after Tecnis Z9000 intraocular lens implantation: effect of contrast sensitivity and wavefront aberration improvements on the quality of daily vision. J Cataract Refract Surg 33: 210–216

    Article  PubMed  Google Scholar 

  31. Dorronsoro C, Cano D, Merayo-Lloves J et al. (2006) Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape. Opt Express 14: 6142–6156

    Article  PubMed  Google Scholar 

  32. Franchini A (2006) Comparative assessment of contrast with spherical and aspherical intraocular lenses. J Cataract Refract Surg 32: 1307–1319

    Article  PubMed  Google Scholar 

  33. Freedman KA, Brown SA, Mathews SM et al. (2003) Pupil size and the ablation zone in laser refractive surgery: Considerations based on geometric optics. J Cataract Refract Surg 19: 1924–1931

    Article  Google Scholar 

  34. Fujikado T, Kuroda T, Maeda N et al. (2004) Wavefront analysis of an eye with monocular triplopia and nuclear cataract. Am J Ophthalmol 137: 361–363

    Article  PubMed  Google Scholar 

  35. Fujikado T, Kuroda T, Maeda N et al. (2004) Light scattering and optical aberrations as objective parameters to predict visual deterioration in eyes with cataracts. J Cataract Refract Surg 30: 1198–1208

    Article  PubMed  Google Scholar 

  36. Geerling G, Seitz B (2005) Keratoplastik – Eine vereinfachte Klassifikation/Terminologie zur Erfassung aktueller Operationskonzepte. Klin Monatsbl Augenheilkd 222: 612–614

    Article  PubMed  CAS  Google Scholar 

  37. Guirao A, Redondo M, Geraghty E et al. (2002) Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted. Arch Ophthalmol 120: 1143–1151

    PubMed  Google Scholar 

  38. Hindman HB, McCally RL, Myrowitz E et al. (in Druck) Evaluation of deep lamellar endothelial keratoplasty surgery using scatterometry and wavefront analyses. Ophthalmology

  39. Hjortdal JO, Møller-Pedersen T, Ivarsen A et al. (2005) Corneal power, thickness, and stiffness: results of a prospective randomized controlled trial of PRK and LASIK for myopia. J Cataract Refract Surg 31: 21–29

    Article  PubMed  Google Scholar 

  40. Holladay JT, Piers PA, Koranyi G et al. (2002) A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg 18: 683–691

    PubMed  Google Scholar 

  41. Hoppenreijs VP, Van Rij G, Beekhuis WH et al. (1993) Causes of high astigmatism after penetrating keratoplasty. Doc Ophthalmol 85: 21–34

    Article  PubMed  CAS  Google Scholar 

  42. Howland B, Howland HC (1976) Subjective measurement of high-order aberrations of the eye. Science 193: 580–582

    Article  PubMed  CAS  Google Scholar 

  43. Huang B, Mirza MA, Qazi MA et al. (2004) The effect of punctal occlusion on wavefront aberrations in dry eye patients after laser in situ keratomileusis. Am J Ophthalmol 137: 52–61

    Article  PubMed  Google Scholar 

  44. Kasper T, Bühren J, Kohnen T (2006) Intraindividual comparison of higher-order aberrations after implantation of aspherical and spherical intraocular lenses as a function of pupil diameter. J Cataract Refract Surg 32: 78–84

    Article  PubMed  Google Scholar 

  45. Kasper T, Bühren J, Kohnen T (2006) Visual performance of aspherical and spherical intraocular lenses: intraindividual comparison of visual acuity, contrast sensitivity, and higher-order aberrations. J Cataract Refract Surg 32: 2022–2029

    Article  PubMed  Google Scholar 

  46. Kershner RM (2003) Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation. J Cataract Refract Surg 29: 1684–1694

    Article  PubMed  Google Scholar 

  47. Kim TI, Yang SJ, Tchah H (2004) Bilateral comparison of wavefront-guided versus conventional laser in situ keratomileusis with Bausch and Lomb Zyoptix. J Refract Surg 20: 432–438

    PubMed  Google Scholar 

  48. Kohnen T, Baumeister M, Cichocki M (2005) Intraokularlinsen zur Korrektur von Refraktionsfehlern. Teil I: Phake Vorderkammerlinsen. Ophthalmologe 102: 1003–1007

    Article  PubMed  CAS  Google Scholar 

  49. Kohnen T, Bühren J (2004) Derzeitiger Stand der wellenfrontgeführten Hornhautchirurgie zur Korrektur von Refraktionsfehlern. Ophthalmologe 101: 631–645

    PubMed  CAS  Google Scholar 

  50. Kohnen T, Bühren J, Cichocki M et al. (2006) Optische Qualität nach refraktiver Hornhautchirurgie. Ophthalmologe 103: 184–191

    Article  PubMed  CAS  Google Scholar 

  51. Kohnen T, Bühren J, Kasper T et al. (2004) Cataract and refractive surgery. In: Kohnen T, Koch DD (eds) Essentials of ophthalmology. Springer, Berlin, pp 301–314

  52. Kohnen T, Bühren J, Kühne C et al. (2004) Wavefront-guided LASIK with the Zyoptix 3.1 system for the correction of myopia and compound myopic astigmatism with 1-year follow-up: clinical outcome and change in higher order aberrations. Ophthalmology 111: 2175–2185

    Article  PubMed  Google Scholar 

  53. Kohnen T, Kasper T, Terzi E (2005) Intraokularlinsen zur Korrektur von Refraktionsfehlern. Teil II: Phake Hinterkammerlinsen und refraktiver Linsenaustausch mit Hinterkammerlinsenimplantation. Ophthalmologe 102: 1105–1117

    Article  PubMed  CAS  Google Scholar 

  54. Kohnen T, Kühne C, Bühren J (2007) The future role of wavefront-guided excimer ablation. Graefes Arch Clin Exp Ophthalmol 245: 189–194

    Article  PubMed  Google Scholar 

  55. Kohnen T, Mahmoud K, Bühren J (2005) Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK. Ophthalmology 112: 1692

    PubMed  Google Scholar 

  56. Koller T, Seiler T (2006) Four corneal presbyopia corrections: simulations of optical consequences on retinal image quality. J Cataract Refract Surg 32: 2118–2123

    Article  PubMed  Google Scholar 

  57. Kuroda T, Fujikado T, Maeda N et al. (2002) Wavefront analysis in eyes with nuclear or cortical cataract. Am J Ophthalmol 134: 1–9

    Article  PubMed  Google Scholar 

  58. Kuroda T, Fujikado T, Maeda N et al. (2002) Wavefront analysis of higher-order aberrations in patients with cataract. J Cataract Refract Surg 28: 438–444

    Article  PubMed  Google Scholar 

  59. Langenbucher A, Seitz B, Kus MM et al. (1999) Zernike representation of corneal topography height data after nonmechanical penetrating keratoplasty. Invest Ophthalmol Vis Sci 40: 582–591

    PubMed  CAS  Google Scholar 

  60. Levy Y, Segal O, Avni I et al. (2005) Ocular higher-order aberrations in eyes with supernormal vision. Am J Ophthalmol 139: 225–228

    Article  PubMed  Google Scholar 

  61. Liang J, Grimm B, Goelz S et al. (1994) Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A 11: 1949–1957

    Article  CAS  Google Scholar 

  62. Lim T, Yang S, Kim M et al. (2006) Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. Am J Ophthalmol 141: 833–839

    Article  PubMed  Google Scholar 

  63. Llorente L, Barbero S, Merayo J et al. (2004) Total and corneal optical aberrations induced by Laser in situ Keratomileusis. J Refract Surg 20: 203–216

    PubMed  Google Scholar 

  64. Losada MA, Navarro R, Santamaria J (1993) Relative contributions of optical and neural limitations to human contrast sensitivity at different luminance levels. Vision Res 33: 2321–2336

    Article  PubMed  CAS  Google Scholar 

  65. MacRae S (1999) Excimer ablation design and elliptical transition zones. J Cataract Refract Surg 25: 1191–1197

    Article  PubMed  CAS  Google Scholar 

  66. MacRae S, Krueger RR, Applegate R (2004) Wavefront customized visual correction: The quest for super vision II. Slack, Thorofare

  67. Maeda N, Fujikado T, Kuroda T et al. (2002) Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 109: 1996–2003

    Article  PubMed  Google Scholar 

  68. Manns F, Ho A, Parel JM et al. (2002) Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration. J Cataract Refract Surg 28: 766–774

    Article  PubMed  Google Scholar 

  69. Marcos S (2003) Image quality of the human eye. Int Ophthalmol Clin 43: 43–62

    PubMed  Google Scholar 

  70. Martinez CE, Applegate RA, Klyce SD et al. (1998) Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol 116: 1053–1062

    PubMed  CAS  Google Scholar 

  71. Mastropasqua L, Nubile M, Ciancaglini M et al. (2004) Prospective randomized comparison of wavefront-guided and conventional photorefractive keratectomy for myopia with the meditec MEL 70 laser. J Refract Surg 20: 422–431

    PubMed  Google Scholar 

  72. McCormick GJ, Porter J, Cox IG et al. (2005) Higher-order aberrations in eyes with irregular corneas after laser refractive surgery. Ophthalmology 112: 1699–1709

    Article  PubMed  Google Scholar 

  73. McLellan JS, Marcos S, Burns SA (2001) Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci 42: 1390–1395

    PubMed  CAS  Google Scholar 

  74. Mester U, Dillinger P, Anterist N (2003) Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg 29: 652–660

    Article  PubMed  Google Scholar 

  75. Mierdel P, Krinke HE, Wiegand W et al. (1997) Messplatz zur Bestimmung der monochromatischen Aberration des menschlichen Auges. Ophthalmologe 94: 441–445

    Article  PubMed  CAS  Google Scholar 

  76. Montes-Micó R (2007) Role of the tear film in the optical quality of the human eye. J Cataract Refract Surg 33: 1631–1635

    Article  PubMed  Google Scholar 

  77. Montes-Micó R, Alio JL,Charman WN (2005) Postblink changes in the ocular modulation transfer function measured by a double-pass method. Invest Ophthalmol Vis Sci 46: 4468–4473

    Article  PubMed  Google Scholar 

  78. Montes-Micó R, Cáliz A, Alió J (2004) Wavefront analysis of higher order aberrations in dry eye patients. J Refract Surg 20: 243–247

    PubMed  Google Scholar 

  79. Montes-Micó R, Caliz A, Alió JL (2004) Changes in ocular aberrations after instillation of artificial tears in dry-eye patients. J Cataract Refract Surg 30: 1649–1652

    Article  PubMed  Google Scholar 

  80. Moreno-Barriuso E, Lloves JM, Marcos S et al. (2001) Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing. Invest Ophthalmol Vis Sci 42: 1396–1403

    PubMed  CAS  Google Scholar 

  81. Moreno-Barriuso E, Merayo-Lloves JM, Marcos S et al. (2000) Ocular aberrations after refractive surgery measured with a laser ray traycing technique. Invest Ophthalmol Vis Sci 41: S303

    Google Scholar 

  82. Mrochen M, Donitzky C, Wüllner C et al. (2004) Wavefront-optimized ablation profiles: theoretical background. J Cataract Refract Surg 30: 775–785

    Article  PubMed  Google Scholar 

  83. Mrochen M, Kaemmerer M, Mierdel P et al. (2001) Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration. J Cataract Refract Surg 27: 362–369

    Article  PubMed  CAS  Google Scholar 

  84. Mrochen M, Kaemmerer M, Seiler T (2000) Wavefront-guided laser in situ keratomileusis: early results in three eyes. J Refract Surg 16: 116–121

    PubMed  CAS  Google Scholar 

  85. Mrochen M, Kaemmerer M, Seiler T (2001) Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery. J Cataract Refract Surg 27: 201–207

    Article  PubMed  CAS  Google Scholar 

  86. Munoz G, Albarran-Diego C, Montes-Micó R et al. (2006) Spherical aberration and contrast sensitivity after cataract surgery with the Tecnis Z9000 intraocular lens. J Cataract Refract Surg 32: 1320–1327

    Article  PubMed  Google Scholar 

  87. Nagy LJ, MacRae S, Yoon G et al. (2007) Photorefractive keratectomy in the cat eye: Biological and optical outcomes. J Cataract Refract Surg 33: 1051–1064

    Article  PubMed  Google Scholar 

  88. Netto MV, Dupps W Jr, Wilson SE (2006) Wavefront-guided ablation: evidence for efficacy compared to traditional ablation. Am J Ophthalmol 141: 360–368

    Article  PubMed  Google Scholar 

  89. Netto MV, Wilson SE (2004) Corneal wound healing relevance to wavefront guided laser treatments. Ophthalmol Clin North Am 17: 225–231, vii

    Article  PubMed  Google Scholar 

  90. Ortiz D, Alió JL, Illueca C et al. (2007) Optical analysis of presbyLASIK treatment by a light propagation algorithm. J Refract Surg 23: 39–44

    PubMed  Google Scholar 

  91. Oshika T, Klyce SD, Applegate RA et al. (1999) Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 127: 1–7

    Article  PubMed  CAS  Google Scholar 

  92. Oshika T, Miyata K, Tokunaga T et al. (2002) Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis. Ophthalmology 109: 1154–1158

    Article  PubMed  Google Scholar 

  93. Oshika T, Okamoto C, Samejima T et al. (2006) Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes. Ophthalmology 113: 1807–1812

    Article  PubMed  Google Scholar 

  94. Packer M, Fine IH, Hoffman RS et al. (2002) Prospective randomized trial of an anterior surface modified prolate intraocular lens. J Refract Surg 18: 692–696

    PubMed  Google Scholar 

  95. Pallikaris I, Kymionis G, Panagopoulou S et al. (2002) Induced optical aberrations following formation of a laser in situ keratomileusis flap. J Cataract Refract Surg 28: 1737–1741

    Article  PubMed  Google Scholar 

  96. Pantanelli S, MacRae S, Jeong TM et al. (in Druck) Characterizing the wave aberration in eyes with Keratoconus or penetrating Keratoplasty using a high-dynamic range wavefront sensor. Ophthlmology

  97. Patel SV, Maguire LJ, McLaren JW et al. (2007) Femtosecond Laser versus mechanical microkeratome for LASIK. A randomized controlled study. Ophthalmology 114: 1482–1490

    Article  PubMed  Google Scholar 

  98. Pepose JS, Applegate RA (2005) Making sense out of wavefront sensing. Am J Ophthalmol 139: 335–343

    Article  PubMed  Google Scholar 

  99. Pesudovs K, Coster DJ (2006) Penetrating keratoplasty for keratoconus: the nexus between corneal wavefront aberrations and visual performance. J Refract Surg 22: 926–931

    PubMed  Google Scholar 

  100. Pesudovs K, Dietze H, Stewart OG et al. (2005) Effect of cataract surgery incision location and intraocular lens type on ocular aberrations. J Cataract Refract Surg 31: 725–734

    Article  PubMed  Google Scholar 

  101. Pesudovs K, Figueiredo FC (2006) Corneal first surface wavefront aberrations before and after pterygium surgery. J Refract Surg 22: 921–925

    PubMed  Google Scholar 

  102. Pesudovs K, Marsack JD, Donnelly WJI et al. (2004) Measureing visual acuity-mesopic or photopic conditions, and high or low contrast letters? J Refract Surg 20: S508–S514

    PubMed  Google Scholar 

  103. Pierscionek BK (1995) Variations in refractive index and absorbance of 670-nm light with age and cataract formation in human lenses. Exp Eye Res 60: 407–413

    Article  PubMed  CAS  Google Scholar 

  104. Pierscionek BK, Weale RA (1995) The optics of the eye-lens and lenticular senescence. A review. Doc Ophthalmol 89: 321–335

    Article  PubMed  CAS  Google Scholar 

  105. Plainis S, Ginis HS, Pallikaris A (2005) The effect of ocular aberrations on steady-state errors of accommodative response. J Vis 5: 466–477

    Article  PubMed  Google Scholar 

  106. Porter J, Guirao A, Cox IG et al. (2001) Monochromatic aberrations of the human eye in a large population. J Opt Soc Am A Opt Image Sci Vis 18: 1793–1803

    Article  PubMed  CAS  Google Scholar 

  107. Porter J, MacRae S, Yoon G et al. (2003) Separate effects of the microkeratome incision and laser ablation on the eye’s wave aberration. Am J Ophthalmol 136: 327–337

    Article  PubMed  Google Scholar 

  108. Potgieter FJ, Roberts C, Cox IG et al. (2005) Prediction of flap response. J Cataract Refract Surg 31: 106–114

    Article  PubMed  Google Scholar 

  109. Riddle HK Jr, Parker DA, Price FW Jr (1998) Management of postkeratoplasty astigmatism. Curr Opin Ophthalmol 9: 15–28

    Article  PubMed  Google Scholar 

  110. Roberts C (2000) The cornea is not a piece of plastic (editorial). J Refract Surg 16: 407–413

    PubMed  CAS  Google Scholar 

  111. Roberts CW, Koester CJ (1993) Optical zone diameters for photorefractive corneal surgery. Invest Ophthalmol Vis Sci 34: 2275–2281

    PubMed  CAS  Google Scholar 

  112. Rocha KM, Soriano ES, Chalita MR et al. (2006) Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study. Am J Ophthalmol 142: 750–756

    Article  PubMed  Google Scholar 

  113. Roorda A, Zhang Y, Duncan JL (2007) High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci 48: 2297–2303

    Article  PubMed  Google Scholar 

  114. Sabesan R, Jeong TM, Carvalho L et al. (2007) Vision improvement by correcting higher-order aberrations with customized soft contact lenses in keratoconic eyes. Opt Lett 32: 1000–1002

    Article  PubMed  Google Scholar 

  115. Salmon T, Pol C van de (2006) Normal-eye Zernike coefficients and root-mean-square wavefront errors. J Cataract Refract Surg 32: 2064–2074

    Article  PubMed  Google Scholar 

  116. Sarver EJ, Sanders DR, Vukich JA (2003) Image quality in myopic eyes corrected with laser in situ keratomileusis and phakic intraocular lens. J Refract Surg 19: 397–404

    PubMed  Google Scholar 

  117. Seiler T, Kaemmerer M, Mierdel P et al. (2000) Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism. Arch Ophthalmol 118: 17–21

    PubMed  CAS  Google Scholar 

  118. Seitz B, Gütay A, Küchle M et al. (2001) Pterygiumgröße, Hornhauttopographie und Visus – eine prospektive klinische Querschnittstudie. Klin Monatsbl Augenheilkd 218: 609–615

    Article  PubMed  CAS  Google Scholar 

  119. Seitz B, Langenbucher A, Küchle M et al. (2003) Impact of graft diameter on corneal power and the regularity of postkeratoplasty astigmatism before and after suture removal. Ophthalmology 110: 2162–2167

    Article  PubMed  Google Scholar 

  120. Seitz B, Langenbucher A, Naumann GOH (2005) Die perforierende Keratoplastik. Eine 100-jahrige Erfolgsgeschichte. Ophthalmologe 102: 1128–1136, 1138–1139

    Article  PubMed  CAS  Google Scholar 

  121. Shah S, Naroo S, Hosking S et al. (2003) Nidek OPD-scan analysis of normal, keratoconic, and penetrating keratoplasty eyes. J Refract Surg 19: S255–S259

    Article  PubMed  Google Scholar 

  122. Sharma M, Wachler BS, Chan CC (2007) Higher order aberrations and relative risk of symptoms after LASIK. J Refract Surg 23: 252–256

    PubMed  Google Scholar 

  123. Simpson MJ (1992) Optical quality of intraocular lenses. J Cataract Refract Surg 18: 86–94

    PubMed  CAS  Google Scholar 

  124. Smolek MK, Klyce SD (2003) Zernike polynomial fitting fails to represent all visually significant corneal aberrations. Invest Ophthalmol Vis Sci 44: 4676–4681

    Article  PubMed  Google Scholar 

  125. Tahzib NG, Bootsma SJ, Eggink FA et al. (2006) Functional outcome and patient satisfaction after Artisan phakic intraocular lens implantation for the correction of myopia. Am J Ophthalmol 142: 31–39

    Article  PubMed  Google Scholar 

  126. Tehrani M, Dick HB (2006) Changes in higher-order aberrations after implantation of a foldable iris-claw lens in myopic phakic eyes. J Cataract Refract Surg 32: 250–254

    Article  PubMed  Google Scholar 

  127. Thibos LN (2004) Unresolved issues in the prediction of subjective refraction from wavefront aberration maps. J Refract Surg 20: S533–S536

    PubMed  Google Scholar 

  128. Thibos LN, Hong X, Bradley A et al. (2004) Accuracy and precision of objective refraction from wavefront aberrations. J Vis 4: 329–351

    Article  PubMed  Google Scholar 

  129. Thibos LN, Hong X, Bradley A et al. (2002) Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J Opt Soc Am A Opt Image Sci Vis 19: 2329–2348

    Article  PubMed  Google Scholar 

  130. Tomidokoro A, Miyata K, Sakaguchi Y et al. (2000) Effects of pterygium on corneal spherical power and astigmatism. Ophthalmology 107: 1568–1571

    Article  PubMed  CAS  Google Scholar 

  131. Tran DB, Shah V (2006) Higher order aberrations comparison in fellow eyes following intraLase LASIK with wavelight allegretto and customcornea LADArvision4000 systems. J Refract Surg 22: S961–S964

    PubMed  Google Scholar 

  132. Twa MD, Parthasarathy S, Roberts C et al. (2005) Automated decision tree classification of corneal shape. Optom Vis Sci 82: 1038–1046

    Article  PubMed  Google Scholar 

  133. Wang L, Koch DD (2003) Anterior corneal optical aberrations induced by laser in situ keratomileusis for hyperopia. J Cataract Refract Surg 29: 1702–1708

    Article  PubMed  Google Scholar 

  134. Wang L, Koch DD (2003) Ocular higher-order aberrations in individuals screened for refractive surgery. J Cataract Refract Surg 29: 1896–1903

    Article  PubMed  Google Scholar 

  135. Williams D, Yoon GY, Porter J et al. (2000) Visual benefit of correcting higher order aberrations of the eye. J Refract Surg 16: S554–S559

    PubMed  CAS  Google Scholar 

  136. Williams DR (1985) Visibility of interference fringes near the resolution limit. J Opt Soc Am A 2: 1087–1093

    PubMed  CAS  Google Scholar 

  137. Wolfing JI, Chung M, Carroll J et al. (2006) High-resolution retinal imaging of cone-rod dystrophy. Ophthalmology 113: 1019 e1

    Article  PubMed  Google Scholar 

  138. Yagci A, Egrilmez S, Kaskaloglu M et al. (2004) Quality of vision following clinically successful penetrating keratoplasty. J Cataract Refract Surg 30: 1287–1294

    Article  PubMed  Google Scholar 

  139. Yoon G, MacRae S, Williams DR et al. (2005) Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg 31: 127–135

    Article  PubMed  Google Scholar 

  140. Yoon GY, Williams DR (2002) Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am A Opt Image Sci Vis 19: 266–275

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Danksagung

Folgende Kollegen haben einige ihrer Daten zur Verfügung gestellt und somit maßgeblich zur Veranschaulichung dieses Artikels beigetragen: Naoyuki Maeda, M.D., Osaka, Japan; Konrad Pesudovs, Ph.D., Bedford Park, Australien; Thomas Salmon, O.D., Ph.D., FAAO, Tahlequah/Okla., USA; Geunyoung Yoon, Rochester/NY, USA. Ihnen sei herzlich gedankt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kohnen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bühren, J., Kohnen, T. Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft. Ophthalmologe 104, 991–1008 (2007). https://doi.org/10.1007/s00347-007-1648-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-007-1648-0

Schlüsselwörter

Keywords

Navigation