Skip to main content
Log in

Epiretinale Sehprothesen

Epiretinal visual prostheses

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Epiretinale Implantate bestehen aus einem Kamerachip, der die Umgebung abbildet, einem Sehprozessor, der die Bildinformation in netzhautspezifische Pulssequenzen umrechnet, einem Sendesystem für Energie und Daten und dem eigentlichen Implantat. Dieses besteht aus einem Empfangsmodul, das in eine Intraokularlinse integriert ist, einem Mikrokabel und dem eigentlichen Netzhautstimulator. Dieser ist mit seinen Reizelektroden auf der Netzhaut fixiert, wobei Netzhautnägel eingesetzt werden. Tierexperimente haben gezeigt, dass die verwendeten Materialien auch über einen längeren Zeitraum im Auge vertragen werden, dass die chronische Energieübertragung keine schädlichen Effekte hat und dass das Implantat sich mit einem Nagel fixieren lässt. Es konnte gezeigt werden, dass die elektrische Stimulation der inneren Netzhautoberfläche zu einer Aktivierung topografisch korrekt zugeordneter kortikaler Areale im primären Sehfeld führt. Erste Untersuchungen am Menschen zeigten, dass selbst nach einer langen Anamnese vollständiger Erblindung durch die elektrische Reizung Sehwahrnehmungen ausgelöst werden können.

Abstract

Epiretinal implants consist of a camera chip capturing the scene, a visual processor calculating retina-specific pulse sequences, a transponder for data and energy, and the implant itself. The implant consists of a receiver integrated into a posterior chamber lens, a microcable, and the retina stimulator. The stimulator is fixated onto the retinal surface using retinal tacks. In animal experiments it was shown that the materials being used were tolerated, the data and energy stream did not induce any adverse events, and that the fixation was feasible using retinal tacks. Stimulation of the inner retinal surface yielded a topographically correct activation of visual cortical areas. Even after a long history of blindness, tests in humans disclosed visual percepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Alteheld N, Vobig MA, Marzella G et al. (2002) Biocompatibility tests on the intraocular vision aid IOVA. Biomed Tech (Berl) 47(Suppl 1 Pt 1):176–178

    Google Scholar 

  2. Alteheld N, Roessler G, Vobig M, Walter P (2004) The retina implant — new approach to a visual prosthesis. Biomed Tech (Berl) 49(4):99–103

    Google Scholar 

  3. Berk H, Held S, Alteheld N, Shojaei R, Vobig MA, Marzella G, Walter P (2002) Explantation of Tack Fixated Epiretinal Microcontact Foils in Rabbits — Preliminary Observations. ARVO Abstract 4456

  4. Chow AY, Packo KH, Pollack JS, Schuchard RA (2003) Subretinal Artificial Silicon Retina Microchip Implantation in Retinitis Pigmentosa Patients: Long Term Follow-Up. ARVO Abstract 4205

    Google Scholar 

  5. Delbeke J, Wanet-Defalque MC, Gerard B, Troosters M, Michaux G, Veraart C (2002) The microsystems based visual prosthesis for optic nerve stimulation. Artif Organs 26(3):232–234

    Google Scholar 

  6. Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 43(9):1091–1102

    Google Scholar 

  7. Eckmiller R (1995) Towards retina implants for improvement of vision in human with RP — challenges and first results. Proc WCNN, Vol. 1, INNS, Lawrence Earlbaum, Hillsdale, pp 228–233

  8. Eckmiller R (1996) Retina Implants with adaptive Retina Encoders. RESNA Research Symposium, pp 21–24

  9. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29(5):281–289

    Google Scholar 

  10. Eger M, Wilms M, Eckhorn R, Schanze T, Hesse L (2005) Retino-cortical information transmission achievable with a retina implant. Biosystems 79(1–3):133–142

    Google Scholar 

  11. Eysel UT, Walter P, Gekeler F et al. (2002) Optical Imaging Reveals 2-Dimensional Patterns of Cortical Activation After Local Retinal Stimulation With Sub- and Epiretinal Visual Prostheses. ARVO Abstract 4486

  12. Guven D, Weiland JD, Fujii G et al. (2005) Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng 2(1):65–73

    Google Scholar 

  13. Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Probst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind subjects. Arch Ophthalmol 114:40–46

    Google Scholar 

  14. Humayun MS, Prince M, de Juan E, Barron Y, Moskowitz M, Klock IB, Milam AH (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40(1):143–148

    Google Scholar 

  15. Humayun M, Greenberg RJ, Mech BV et al. (2003) Chronically Implanted Intraocular Retinal Prosthesis in Two Blind Subjects. ARVO Abstract 4206

  16. Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, de Juan E (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40(9):2073–2081

    Google Scholar 

  17. Mokwa W (2004) MEMs Technologies for Epiretinal Stimulation of the Retina. J Micromech Microeng 14:12–16

    Google Scholar 

  18. Mokwa W, Schnakenberg U (2001) Micro-Transponder Systems for Medical Applications — IEEE Transactions on Instrumentation and Measurement 50(6):1551–1555

    Google Scholar 

  19. Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39(15):2577–2587

    Google Scholar 

  20. Peyman G, Chow AY, Liang C, Chow VY, Perlman JI, Peachey NS (1998) Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 29:234–241

    Google Scholar 

  21. Rizzo JF, Wyatt J, Humayun M et al. (2001) Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 108(1):13–14

    Google Scholar 

  22. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44(12):5355–5361

    Google Scholar 

  23. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44(12):5362–5369

    Google Scholar 

  24. Sachs HG, Gabel VP (2004) Retinal replacement — the development of microelectronic retinal prostheses — experience with subretinal implants and new aspects. Graefes Arch Clin Exp Ophthalmol 242(8):717–723

    Google Scholar 

  25. Santos A, Humayun MS, de Juan E, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115(4):511–515

    Google Scholar 

  26. Schanze T, Wilms M, Eger M, Hesse L, Eckhorn R (2002) Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol 240(11):947–954

    Google Scholar 

  27. Schanze T, Greve N, Hesse L (2003) Towards the cortical representation of form and motion stimuli generated by a retina implant. Graefes Arch Clin Exp Ophthalmol 241(8):685–693

    Google Scholar 

  28. Schwahn HN, Gekeler F, Kohler K et al. (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239(12):961–967

    Google Scholar 

  29. Slavcheva E, Vitushinsky R, Mokwa W, Schnakenberg U (2004) Sputtered Iridium Oxide Films as Charge Injection Material for Functional Electrostimulation. J Electrochem Soc 151(7):E226–E237

    Google Scholar 

  30. Stone JL, Barlow WE, Humayun MS, de Juan E, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110:1634–1639

    Google Scholar 

  31. Veraart C, Raftopoulos C, Mortimer JT et al. (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186

    Google Scholar 

  32. Veraart C, Wanet-Defalque MC, Gérard B, Vanlierde A, Delbeke J (2003) Pattern Recognition with the Optic Nerve Visual Prosthesis. Artif Organs 27(11):996

    Google Scholar 

  33. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238(4):315–318

    Google Scholar 

  34. Walter P, Szurman P, Vobig M et al. (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19(6):546–552

    Google Scholar 

  35. Walter P, Kisvarday ZF, Roessler GF, Alteheld NM, Goertz M, Stieglitz T, Eysel UT (2004) Optical imaging of the visual cortex in the cat demonstrating local cortical activation after epiretinal stimulation with a completely implanted wireless epiretinal prosthesis. ARVO Abstract #4225

  36. Walter P, Kisvarday ZF, Görtz M, Alteheld N, Rössler G, Stieglitz T, Eysel UT (2005) Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46:1780–1785

    Google Scholar 

  37. Zrenner E, Stett A, Weiss S et al. (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39(15):2555–2567

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Walter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, P., Mokwa, W. Epiretinale Sehprothesen. Ophthalmologe 102, 933–940 (2005). https://doi.org/10.1007/s00347-005-1250-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-005-1250-2

Schlüsselwörter

Keywords

Navigation