Skip to main content

Advertisement

Log in

Surveillance after prostate focal therapy

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Long-term outcomes from large cohorts are not yet available upon which to base recommended follow-up protocols after prostate focal therapy. This is an updated summary of a 2015 SIU-ICUD review of the best available current evidence and expert consensus on guidelines for surveillance after prostate focal therapy.

Methods

We performed a systematic search of the PubMed, Cochrane and Embase databases to identify studies where primary prostate focal therapy was performed to treat prostate cancer.

Results

Multiparametric magnetic resonance imaging (mpMRI) should be performed at 3–6 months, 12–24 months and at 5 years after focal therapy. Targeted biopsy of the treated zone should be performed at 3–6 months and fusion biopsy of any suspicious lesion seen on mpMRI. Additionally, a systematic biopsy should be performed at 12–24 months and again at 5 years. In histological diagnosis, characteristic changes of each treatment modality should be noted and in indeterminate situations various immunohistochemical molecular markers can be helpful. Small volume 3 + 3 (Prognostic grade group [PGG] 1) or very small volume (< 0.2 cc or < 7 mm diameter) 3 + 4 (PGG 2) are acceptable in the treated zone at longitudinal follow-up. Significant volumes of 3 + 4 (PGG 2) or more within the treated zone should be treated. Any clinically significant cancer subsequently arising within the non-treated zone should be treated and handled in the same way as any de novo prostate cancer. Patients should be counseled regarding whole-gland and focal approaches to treating these new foci where appropriate. One or two well-delineated foci of significant cancer can be ablated to keep the patient in the ‘active surveillance pool’. More extensive disease should be treated with traditional whole-gland techniques.

Conclusion

Focal therapy remains a nascent field largely comprising single center cohorts with little long-term data. Our current post-focal therapy surveillance consensus recommendations represent the synthesis of the best available evidence as well as expert opinion. Further work is necessary to define the most oncologically safe and cost-effective way of following patients after focal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By today’s standards, mpMRI is the best imaging technique, but radiological assessment may entail other imaging modalities to supplant or complement mpMRI in the future.

References

  1. Tay KJ, Mendez M, Moul JW, Polascik TJ (2015) Active surveillance for prostate cancer: can we modernize contemporary protocols to improve patient selection and outcomes in the focal therapy era? Curr Opin Urol 25(3):185–190

    Article  PubMed  Google Scholar 

  2. Postema AW, De Reijke TM, Ukimura O, Van den Bos W, Azzouzi AR, Barret E et al (2016) Standardization of definitions in focal therapy of prostate cancer: report from a Delphi consensus project. World J Urol 34(10):1373–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donaldson IA, Alonzi R, Barratt D, Barret E, Berge V, Bott S et al (2015) Focal therapy: patients, interventions, and outcomes–a report from a consensus meeting. Eur Urol 67(4):771–777

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bratt O, Folkvaljon Y, Loeb S, Klotz L, Egevad L, Stattin P (2015) Upper limit of cancer extent on biopsy defining very low-risk prostate cancer. BJU Int 116(2):213–219

    Article  PubMed  Google Scholar 

  5. Babaian RJ, Donnelly B, Bahn D, Baust JG, Dineen M, Ellis D et al (2008) Best practice statement on cryosurgery for the treatment of localized prostate cancer. J Urol 180(5):1993–2004

    Article  PubMed  Google Scholar 

  6. Napoli A, Anzidei M, De Nunzio C, Cartocci G, Panebianco V, De Dominicis C et al (2013) Real-time magnetic resonance–guided high-intensity focused ultrasound focal therapy for localised prostate cancer: preliminary experience. Eur Urol 63(2):395–398

    Article  PubMed  Google Scholar 

  7. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43(1):33–56

    Article  PubMed  Google Scholar 

  8. Tay KJ, Cheng CWS, Lau WKO, Khoo J, Thng CH, Kwek JW (2017) Focal therapy for prostate cancer with in-bore MR-guided focused ultrasound: two-year follow-up of a phase I trial-complications and functional outcomes. Radiology 285(2):620–628

    Article  PubMed  Google Scholar 

  9. Van Den Bos W, De Bruin DM, Van Randen A, Engelbrecht MRW, Postema AW, Muller BG et al (2015) Imaging of the ablation zone after focal irreversible electroporation treatment in prostate cancer. Eur Urol Suppl 14(2):e828

    Article  Google Scholar 

  10. Dall’Era MA, Albertsen PC, Bangma C, Carroll PR, Carter HB, Cooperberg MR et al (2012) Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol 62(6):976–983

    Article  PubMed  Google Scholar 

  11. Cox JD, Grignon DJ, Kaplan RS, Parsons JT, Schellhammer PF (1997) Consensus statement: guidelines for PSA following radiation therapy. Int J Radiat Oncol Biol Phys 37(5):1035–1041. https://doi.org/10.1016/S0360-3016(97)00002-3

    Article  Google Scholar 

  12. Roach Iii M, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65(4):965–974

    Article  Google Scholar 

  13. Zietman AL, Tibbs MK, Dallow KC, Smith CT, Althausen AF, Zlotecki RA et al (1996) Use of PSA nadir to predict subsequent biochemical outcome following external beam radiation therapy for T1-2 adenocarcinoma of the prostate. Radiother Oncol 40(2):159–162

    Article  CAS  PubMed  Google Scholar 

  14. Ray ME, Thames HD, Levy LB, Horwitz EM, Kupelian PA, Martinez AA et al (2006) PSA nadir predicts biochemical and distant failures after external beam radiotherapy for prostate cancer: a multi-institutional analysis. Int J Radiat Oncol Biol Phys 64(4):1140–1150

    Article  PubMed  Google Scholar 

  15. Lee WR, Hanks GE, Hanlon A (1997) Increasing prostate-specific antigen profile following definitive radiation therapy for localized prostate cancer: clinical observations. J Clin Oncol 15(1):230–238

    Article  CAS  PubMed  Google Scholar 

  16. Levy DA, Ross AE, ElShafei A, Krishnan N, Hatem A, Jones JS (2014) Definition of biochemical success following primary whole gland prostate cryoablation. J Urol 192(5):1380–1384

    Article  CAS  PubMed  Google Scholar 

  17. Cordeiro ER, Cathelineau X, Thuroff S, Marberger M, Crouzet S, de la Rosette JJ (2012) High-intensity focused ultrasound (HIFU) for definitive treatment of prostate cancer. BJU Int 110(9):1228–1242

    Article  PubMed  Google Scholar 

  18. Ahmed HU, Dickinson L, Charman S, Weir S, McCartan N, Hindley RG et al (2015) Focal ablation targeted to the index lesion in multifocal localised prostate cancer: a prospective development study. Eur Urol 68(6):927–936

    Article  PubMed  Google Scholar 

  19. Dickinson L, Ahmed HU, Hindley RG, McCartan N, Freeman A, Allen C et al (2017) Prostate-specific antigen vs. magnetic resonance imaging parameters for assessing oncological outcomes after high intensity-focused ultrasound focal therapy for localized prostate cancer. Urol Oncol 35(1):30.e9–30.e15

    Article  CAS  Google Scholar 

  20. Roehrborn CG, Boyle P, Gould AL, Waldstreicher J (1999) Serum prostate-specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology 53(3):581–589

    Article  CAS  PubMed  Google Scholar 

  21. Bohnen AM, Groeneveld FP, Bosch JL (2007) Serum prostate-specific antigen as a predictor of prostate volume in the community: the Krimpen study. Eur Urol 51(6):1645–1652 (Discussion 52–53)

    Article  PubMed  Google Scholar 

  22. Muller BG, van den Bos W, Brausi M, Futterer JJ, Ghai S, Pinto PA et al (2015) Follow-up modalities in focal therapy for prostate cancer: results from a Delphi consensus project. World J Urol 33(10):1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Turkbey B, Fotin SV, Huang RJ, Yin Y, Daar D, Aras O et al (2013) Fully automated prostate segmentation on MRI: comparison with manual segmentation methods and specimen volumes. AJR Am J Roentgenol 201(5):W720–W729

    Article  PubMed  Google Scholar 

  24. Arumainayagam N, Ahmed HU, Moore CM, Freeman A, Allen C, Sohaib SA et al (2013) Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard. Radiology 268(3):761–769

    Article  PubMed  Google Scholar 

  25. Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS (2012) Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol 187(6):2032–2038

    Article  PubMed  Google Scholar 

  26. Muller BG, Futterer JJ, Gupta RT, Katz A, Kirkham A, Kurhanewicz J et al (2014) The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 113(2):218–227

    Article  PubMed  Google Scholar 

  27. Thompson JE, Moses D, Shnier R, Brenner P, Delprado W, Ponsky L et al (2014) Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol 192(1):67–74

    Article  PubMed  Google Scholar 

  28. Barentsz J, de Rooij M, Villeirs G, Weinreb J (2017) Prostate imaging-reporting and data system version 2 and the implementation of high-quality prostate magnetic resonance imaging. Eur Urol 72(2):189–191

    Article  PubMed  Google Scholar 

  29. Garcia-Reyes K, Passoni NM, Palmeri ML, Kauffman CR, Choudhury KR, Polascik TJ et al (2015) Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis. Abdom Imaging 40(1):134–142

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tay KJ, Gupta RT, Brown AF, Silverman RK, Polascik TJ (2016) Defining the incremental utility of prostate multiparametric magnetic resonance imaging at standard and specialized read in predicting extracapsular extension of prostate cancer. Eur Urol 70(2):211–213

    Article  PubMed  Google Scholar 

  31. Arrayeh E, Westphalen AC, Kurhanewicz J, Roach M 3rd, Jung AJ, Carroll PR et al (2012) Does local recurrence of prostate cancer after radiation therapy occur at the site of primary tumor? Results of a longitudinal MRI and MRSI study. Int J Radiat Oncol Biol Phys. 82(5):e787–e793

    Article  PubMed  PubMed Central  Google Scholar 

  32. Azzouzi AR, Barret E, Bennet J, Moore C, Taneja S, Muir G et al (2015) TOOKAD(R) Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World J Urol 33(7):945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eggener SE, Yousuf A, Watson S, Wang S, Oto A (2016) Phase II evaluation of magnetic resonance imaging guided focal laser ablation of prostate cancer. J Urol 196(6):1670–1675

    Article  PubMed  Google Scholar 

  34. Villers A, Puech P, Flamand V, Haber GP, Desai MM, Crouzet S et al (2017) Partial prostatectomy for anterior cancer: short-term oncologic and functional outcomes. Eur Urol 72(3):333–342

    Article  PubMed  Google Scholar 

  35. Ting F, Tran M, Bohm M, Siriwardana A, Van Leeuwen PJ, Haynes AM et al (2016) Focal irreversible electroporation for prostate cancer: functional outcomes and short-term oncological control. Prostate Cancer Prostatic Dis 19(1):46–52

    Article  CAS  PubMed  Google Scholar 

  36. Abouassaly R, Lane BR, Jones JS (2008) Staging saturation biopsy in patients with prostate cancer on active surveillance protocol. Urology 71(4):573–577

    Article  PubMed  Google Scholar 

  37. Crawford ED, Rove KO, Barqawi AB, Maroni PD, Werahera PN, Baer CA et al (2013) Clinical-pathologic correlation between transperineal mapping biopsies of the prostate and three-dimensional reconstruction of prostatectomy specimens. Prostate 73(7):778–787

    Article  PubMed  Google Scholar 

  38. Chang JJ, Shinohara K, Bhargava V, Presti JC Jr (1998) Prospective evaluation of lateral biopsies of the peripheral zone for prostate cancer detection. J Urol 160(6 Pt 1):2111–2114

    Article  CAS  PubMed  Google Scholar 

  39. Tsivian M, Hruza M, Mouraviev V, Rassweiler J, Polascik TJ (2010) Prostate biopsy in selecting candidates for hemiablative focal therapy. J Endourol 24(5):849–853

    Article  PubMed  Google Scholar 

  40. Siddiqui MM, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N et al (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313(4):390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van den Bos W, Muller BG, Ahmed H, Bangma CH, Barret E, Crouzet S et al (2014) Focal therapy in prostate cancer: international multidisciplinary consensus on trial design. Eur Urol 65(6):1078–1083

    Article  PubMed  Google Scholar 

  42. Ryan P, Finelli A, Lawrentschuk N, Fleshner N, Sweet J, Cheung C et al (2012) Prostatic needle biopsies following primary high intensity focused ultrasound (HIFU) therapy for prostatic adenocarcinoma: histopathological features in tumour and non-tumour tissue. J Clin Pathol 65(8):729–734

    Article  PubMed  Google Scholar 

  43. Bostwick DG, Egbert BM, Fajardo LF (1982) Radiation injury of the normal and neoplastic prostate. Am J Surg Pathol 6(6):541–551

    Article  CAS  PubMed  Google Scholar 

  44. Gaudin PB, Zelefsky MJ, Leibel SA, Fuks Z, Reuter VE (1999) Histopathologic effects of three-dimensional conformal external beam radiation therapy on benign and malignant prostate tissues. Am J Surg Pathol 23(9):1021–1031

    Article  CAS  PubMed  Google Scholar 

  45. Prestidge BR, Hoak DC, Grimm PD, Ragde H, Cavanagh W, Blasko JC (1997) Posttreatment biopsy results following interstitial brachytherapy in early-stage prostate cancer. Int J Radiat Oncol Biol Phys 37(1):31–39

    Article  CAS  PubMed  Google Scholar 

  46. Miller EB, Ladaga LE, al-Mahdi AM, Schellhammer PF (1993) Reevaluation of prostate biopsy after definitive radiation therapy. Urology 41(4):311–316

    Article  CAS  PubMed  Google Scholar 

  47. D'Alimonte L, Helou J, Sherman C, Loblaw A, Chung HT, Ravi A et al (2014) The clinical significance of persistent cancer cells on prostate biopsy after high dose-rate brachytherapy boost for intermediate-risk prostate cancer. Brachytherapy 14(3):309–314. https://doi.org/10.1016/j.brachy.2014.10.003

    Article  PubMed  Google Scholar 

  48. Crook J, Malone S, Perry G, Bahadur Y, Robertson S, Abdolell M (2000) Postradiotherapy prostate biopsies: what do they really mean? Results for 498 patients. Int J Radiat Oncol Biol Phys 48(2):355–367

    Article  CAS  PubMed  Google Scholar 

  49. Van Leenders GJLH, Beerlage HP, Ruijter ET, de la Rosette JJMCH, van de Kaa CA (2000) Histopathological changes associated with high intensity focused ultrasound (HIFU) treatment for localised adenocarcinoma of the prostate. J Clin Pathol 53(5):391–394

    Article  PubMed  PubMed Central  Google Scholar 

  50. Biermann K, Montironi R, Lopez-Beltran A, Zhang S, Cheng L (2010) Histopathological findings after treatment of prostate cancer using high-intensity focused ultrasound (HIFU). Prostate 70(11):1196–1200

    Article  PubMed  Google Scholar 

  51. Gooden C, Nieh PT, Osunkoya AO (2013) Histologic findings on prostate needle core biopsies following cryotherapy as monotherapy for prostatic adenocarcinoma. Hum Pathol 44(5):867–872

    Article  PubMed  Google Scholar 

  52. El-Shafei A, Abd El Latif A, Hatem A, Li J, Luay S, David L et al (1816) Recurrence descriptive pattern on post cryoablation prostate biopsy. J Urol 187(4):e733–e734

    Google Scholar 

  53. Lindner U, Lawrentschuk N, Weersink RA, Davidson SR, Raz O, Hlasny E et al (2010) Focal laser ablation for prostate cancer followed by radical prostatectomy: validation of focal therapy and imaging accuracy. Eur Urol 57(6):1111–1114

    Article  PubMed  Google Scholar 

  54. Eymerit-Morin C, Zidane M, Lebdai S, Triau S, Azzouzi AR, Rousselet MC (2013) Histopathology of prostate tissue after vascular-targeted photodynamic therapy for localized prostate cancer. Virchows Arch 463(4):547–552

    Article  CAS  PubMed  Google Scholar 

  55. Neal RE 2nd, Millar JL, Kavnoudias H, Royce P, Rosenfeldt F, Pham A et al (2014) In vivo characterization and numerical simulation of prostate properties for non-thermal irreversible electroporation ablation. Prostate 74(5):458–468

    Article  PubMed  Google Scholar 

  56. Srigley JR, Delahunt B, Evans AJ (2012) Therapy-associated effects in the prostate gland. Histopathology 60(1):153–165

    Article  PubMed  Google Scholar 

  57. Evans AJ, Ryan P, Van derKwast T (2011) Treatment effects in the prostate including those associated with traditional and emerging therapies. Adv Anat Pathol 18(4):281–293

    Article  CAS  PubMed  Google Scholar 

  58. Yang XJ, Laven B, Tretiakova M, Blute RD Jr, Woda BA, Steinberg GD et al (2003) Detection of alpha-methylacyl-coenzyme A racemase in postradiation prostatic adenocarcinoma. Urology 62(2):282–286

    Article  PubMed  Google Scholar 

  59. Martens MB, Keller JH (2005) Routine immunohistochemical staining for high-molecular weight cytokeratin 34-[beta] and [alpha]-methylacyl CoA racemase (P504S) in postirradiation prostate biopsies. Mod Pathol 19(2):287–290

    Article  CAS  Google Scholar 

  60. Cheng L, Sebo TJ, Slezak J, Pisansky TM, Bergstralh EJ, Neumann RM et al (1998) Predictors of survival for prostate carcinoma patients treated with salvage radical prostatectomy after radiation therapy. Cancer 83(10):2164–2171

    Article  CAS  PubMed  Google Scholar 

  61. Scalzo DA, Kallakury BV, Gaddipati RV, Sheehan CE, Keys HM, Savage D et al (1998) Cell proliferation rate by MIB-1 immunohistochemistry predicts postradiation recurrence in prostatic adenocarcinomas. Am J Clin Pathol 109(2):163–168

    Article  CAS  PubMed  Google Scholar 

  62. Crook J, Robertson S, Esche B (1994) Proliferative cell nuclear antigen in postradiotherapy prostate biopsies. Int J Radiat Oncol Biol Phys 30(2):303–308

    Article  CAS  PubMed  Google Scholar 

  63. Barret E, Harvey-Bryan KA, Sanchez-Salas R, Rozet F, Galiano M, Cathelineau X (2014) How to diagnose and treat focal therapy failure and recurrence? Curr Opin Urol 24(3):241–246

    Article  PubMed  Google Scholar 

  64. Crehange G, Roach M 3rd, Martin E, Cormier L, Peiffert D, Cochet A et al (2014) Salvage reirradiation for locoregional failure after radiation therapy for prostate cancer: who, when, where and how? Cancer Radiother 18(5–6):524–534

    Article  CAS  PubMed  Google Scholar 

  65. Stephenson AJ, Eastham JA (2005) Role of salvage radical prostatectomy for recurrent prostate cancer after radiation therapy. J Clin Oncol 23(32):8198–8203

    Article  PubMed  Google Scholar 

  66. Le JD, Tan N, Shkolyar E, Lu DY, Kwan L, Marks LS et al (2015) Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur Urol 67(3):569–576

    Article  PubMed  Google Scholar 

  67. Hollmann BG, van Triest B, Ghobadi G, Groenendaal G, de Jong J, van der Poel HG et al (2015) Gross tumor volume and clinical target volume in prostate cancer: how do satellites relate to the index lesion. Radiother Oncol 115(1):96–100

    Article  PubMed  Google Scholar 

  68. Cooper CS, Eeles R, Wedge DC, Van Loo P, Gundem G, Alexandrov LB et al (2015) Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue. Nat Genet 47(4):367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KJT: project development, consensus development, manuscript writing. MBA: project development, consensus development, manuscript writing. SG: consensus development, manuscript writing. REJ: consensus development, manuscript writing. JGK: consensus development, manuscript writing. LHK: consensus development, manuscript writing. RM: consensus development, manuscript writing. SM: consensus development, manuscript writing. ARR: consensus development, manuscript writing. BT: consensus development, manuscript writing. AV: consensus development, manuscript writing. TJP: Project development, consensus development, manuscript writing.

Corresponding author

Correspondence to Kae Jack Tay.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose.

Human and animal participants right

No human subjects or animals were involved in this study

Informed consent

No informed consent was necessary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tay, K.J., Amin, M.B., Ghai, S. et al. Surveillance after prostate focal therapy. World J Urol 37, 397–407 (2019). https://doi.org/10.1007/s00345-018-2363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-018-2363-y

Keywords

Navigation