Skip to main content
Log in

Clinical significance of residual fragments in 2015: impact, detection, and how to avoid them

  • Invited Review
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

Residual fragments are common after stone treatment. Little is known about clinical outcomes relevant to the patient. This comprehensive review of the literature highlights the impact of residual fragments, modes of detection, and treatment strategies to avoid residual fragments in shock wave therapy, ureteroscopy, and percutaneous nephrolithotomy.

Methods

A comprehensive review of current literature was performed using PubMed®, MEDLINE®, Embase™, Ovid®, Google Scholar™, and the Cochrane Library. Publications relevant to the subject were retrieved and critically appraised.

Results

Residual fragments after treatment for urinary stones have a significant impact on a patient’s well-being and future course. (Ultra-) low-dose non-contrast computed tomography detects small residuals most reliably. In shock wave lithotripsy, adherence to basic principles helps to improve results. Various techniques and devices facilitate complete stone clearance in conventional and miniaturized percutaneous nephrolithotomy and (flexible) ureteroscopy. Promising new technologies in shock waves, lasers, and robotics (and potentially microrobotics) are on the horizon.

Conclusions

Residual fragments are relevant to patients. Contemporary treatment of urolithiasis should aim at complete stone clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AUA:

American Urological Association

BWL:

Burst wave lithotripsy

CIRF:

Clinically insignificant residual fragment(s)

CT:

Computed tomography

EAU:

European Association of Urology

fURS:

Flexible ureteroscopy

IVU:

Intravenous urography

KUB:

Kidney ureter bladder

LISL:

Laser-induced shock wave lithotripsy

NCCT:

Non-contrast computed tomography

PDI:

Percussion, diuresis, and inversion

PNL:

Percutaneous nephrolithotomy

RF:

Residual fragment(s)

SFR:

Stone-free rate

SWL:

Extracorporal shock wave therapy

US:

Ultrasonography

References

  1. Altunrende F, Tefekli A, Stein RJ, Autorino R, Yuruk E, Laydner H, Binbay M, Muslumanoglu AY (2011) Clinically insignificant residual fragments after percutaneous nephrolithotomy: medium-term follow-up. J Endourol/Endourol Soc 25(6):941–945. doi:10.1089/end.2010.0491

    Article  Google Scholar 

  2. Osman MM, Alfano Y, Kamp S, Haecker A, Alken P, Michel MS, Knoll T (2005) 5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy. Eur Urol 47(6):860–864. doi:10.1016/j.eururo.2005.01.005

    Article  PubMed  Google Scholar 

  3. Rassweiler JJ, Renner C, Chaussy C, Thuroff S (2001) Treatment of renal stones by extracorporeal shockwave lithotripsy: an update. Eur Urol 39(2):187–199

    Article  CAS  PubMed  Google Scholar 

  4. Ozgor F, Simsek A, Binbay M, Akman T, Kucuktopcu O, Sarilar O, Muslumanoglu AY, Berberoglu Y (2014) Clinically insignificant residual fragments after flexible ureterorenoscopy: medium-term follow-up results. Urolithiasis 42(6):533–538. doi:10.1007/s00240-014-0691-y

    Article  PubMed  Google Scholar 

  5. Tan YH, Wong M (2005) How significant are clinically insignificant residual fragments following lithotripsy? Curr Opin Urol 15(2):127–131

    Article  PubMed  Google Scholar 

  6. El-Nahas AR, El-Assmy AM, Madbouly K, Sheir KZ (2006) Predictors of clinical significance of residual fragments after extracorporeal shockwave lithotripsy for renal stones. J Endourol/Endourol Soc 20(11):870–874. doi:10.1089/end.2006.20.870

    Article  Google Scholar 

  7. Khaitan A, Gupta NP, Hemal AK, Dogra PN, Seth A, Aron M (2002) Post-ESWL, clinically insignificant residual stones: reality or myth? Urology 59(1):20–24

    Article  PubMed  Google Scholar 

  8. Raman JD, Bagrodia A, Gupta A, Bensalah K, Cadeddu JA, Lotan Y, Pearle MS (2009) Natural history of residual fragments following percutaneous nephrostolithotomy. J Urol 181(3):1163–1168. doi:10.1016/j.juro.2008.10.162

    Article  PubMed  Google Scholar 

  9. Ganpule A, Desai M (2009) Fate of residual stones after percutaneous nephrolithotomy: a critical analysis. J Endourol/Endourol Soc 23(3):399–403. doi:10.1089/end.2008.0217

    Article  Google Scholar 

  10. Rebuck DA, Macejko A, Bhalani V, Ramos P, Nadler RB (2011) The natural history of renal stone fragments following ureteroscopy. Urology 77(3):564–568. doi:10.1016/j.urology.2010.06.056

    Article  PubMed  Google Scholar 

  11. Denstedt JD, Clayman RV, Picus DD (1991) Comparison of endoscopic and radiological residual fragment rate following percutaneous nephrolithotripsy. J Urol 145(4):703–705

    CAS  PubMed  Google Scholar 

  12. Acar C, Cal C (2012) Impact of Residual Fragments following Endourological Treatments in Renal Stones. Adv Urol 2012:813523. doi:10.1155/2012/813523

    Article  PubMed  PubMed Central  Google Scholar 

  13. Logarakis NF, Jewett MA, Luymes J, Honey RJ (2000) Variation in clinical outcome following shock wave lithotripsy. J Urol 163(3):721–725

    Article  CAS  PubMed  Google Scholar 

  14. Türk C, Petřík A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2015) EAU guidelines on interventional treatment for urolithiasis. Eur Urol. doi:10.1016/j.eururo.2015.07.041. [Epub ahead of print]

    Google Scholar 

  15. Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck C, Gallucci M, Knoll T, Lingeman JE, Nakada SY, Pearle MS, Sarica K, Turk C, Wolf JS Jr (2007) 2007 guideline for the management of ureteral calculi. J Urol 178(6):2418–2434. doi:10.1016/j.juro.2007.09.107

    Article  PubMed  Google Scholar 

  16. Ray AA, Ghiculete D, Pace KT, Honey RJ (2010) Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology 76(2):295–300. doi:10.1016/j.urology.2009.12.015

    Article  PubMed  Google Scholar 

  17. Kennish SJ, Bhatnagar P, Wah TM, Bush S, Irving HC (2008) Is the KUB radiograph redundant for investigating acute ureteric colic in the non-contrast enhanced computed tomography era? Clin Radiol 63(10):1131–1135. doi:10.1016/j.crad.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  18. Kupeli B, Gurocak S, Tunc L, Senocak C, Karaoglan U, Bozkirli I (2005) Value of ultrasonography and helical computed tomography in the diagnosis of stone-free patients after extracorporeal shock wave lithotripsy (USG and helical CT after SWL). Int Urol Nephrol 37(2):225–230. doi:10.1007/s11255-004-7975-z

    Article  PubMed  Google Scholar 

  19. Osman Y, El-Tabey N, Refai H, Elnahas A, Shoma A, Eraky I, Kenawy M, El-Kapany H (2008) Detection of residual stones after percutaneous nephrolithotomy: role of nonenhanced spiral computerized tomography. J Urol 179(1):198–200. doi:10.1016/j.juro.2007.08.175 (discussion 200)

    Article  PubMed  Google Scholar 

  20. Osman Y, Harraz AM, El-Nahas AR, Awad B, El-Tabey N, Shebel H, Shoma AM, Eraky I, El-Kenawy M (2013) Clinically insignificant residual fragments: an acceptable term in the computed tomography era? Urology 81(4):723–726. doi:10.1016/j.urology.2013.01.011

    Article  PubMed  Google Scholar 

  21. Kluner C, Hein PA, Gralla O, Hein E, Hamm B, Romano V, Rogalla P (2006) Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 30(1):44–50

    Article  PubMed  Google Scholar 

  22. Pooler BD, Lubner MG, Kim DH, Ryckman EM, Sivalingam S, Tang J, Nakada SY, Chen GH, Pickhardt PJ (2014) Prospective trial of the detection of urolithiasis on ultralow dose (sub mSv) noncontrast computerized tomography: direct comparison against routine low dose reference standard. J Urol 192(5):1433–1439. doi:10.1016/j.juro.2014.05.089

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schmiedt E, Chaussy C (1984) Extracorporeal shock-wave lithotripsy (ESWL) of kidney and ureteric stones. Int Urol Nephrol 16(4):273–283

    Article  CAS  PubMed  Google Scholar 

  24. Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound Med Biol 28(6):769–774

    Article  CAS  PubMed  Google Scholar 

  25. Neisius A, Wollner J, Thomas C, Roos FC, Brenner W, Hampel C, Preminger GM, Thuroff JW, Gillitzer R (2013) Treatment efficacy and outcomes using a third generation shockwave lithotripter. BJU Int 112(7):972–981. doi:10.1111/bju.12159

    Article  PubMed  Google Scholar 

  26. Tan YM, Yip SK, Chong TW, Wong MY, Cheng C, Foo KT (2002) Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the Storz Modulith SL 20 lithotripter at the Singapore general hospital. Scand J Urol Nephrol 36(5):363–367. doi:10.1080/003655902320783872

    Article  CAS  PubMed  Google Scholar 

  27. Madbouly K, Sheir KZ, Elsobky E, Eraky I, Kenawy M (2002) Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol 167(3):1239–1242

    Article  PubMed  Google Scholar 

  28. Semins MJ, Trock BJ, Matlaga BR (2008) The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 179(1):194–197. doi:10.1016/j.juro.2007.08.173

    Article  PubMed  Google Scholar 

  29. Tailly GG, Tailly-Cusse MM (2014) Optical coupling control: an important step toward better shockwave lithotripsy. J Endourol/Endourol Soc 28(11):1368–1373. doi:10.1089/end.2014.0338

    Article  Google Scholar 

  30. Jagtap J, Mishra S, Bhattu A, Ganpule A, Sabnis R, Desai M (2014) Evolution of shockwave lithotripsy (SWL) technique: a 25-year single centre experience of >5000 patients. BJU Int 114(5):748–753. doi:10.1111/bju.12808

    Article  PubMed  Google Scholar 

  31. Lee SW, Chaiyakunapruk N, Chong HY, Liong ML (2014) Comparative effectiveness and safety of various treatment procedures for lower pole renal calculi: a systematic review and network meta-analysis. BJU Int. doi:10.1111/bju.12983

    Google Scholar 

  32. de la Rosette J, Assimos D, Desai M, Gutierrez J, Lingeman J, Scarpa R, Tefekli A (2011) The Clinical Research Office of the Endourological Society Percutaneous Nephrolithotomy Global Study: indications, complications, and outcomes in 5803 patients. J Endourol/Endourol Soc 25(1):11–17. doi:10.1089/end.2010.0424

    Article  Google Scholar 

  33. Knoll T, Jessen JP, Honeck P, Wendt-Nordahl G (2011) Flexible ureterorenoscopy versus miniaturized PNL for solitary renal calculi of 10-30 mm size. World J Urol 29(6):755–759. doi:10.1007/s00345-011-0784-y

    Article  PubMed  Google Scholar 

  34. Leveillee RJ, Lobik L (2003) Intracorporeal lithotripsy: which modality is best? Curr Opin Urol 13(3):249–253. doi:10.1097/01.mou.0000068753.22370.47

    Article  PubMed  Google Scholar 

  35. Bader MJ, Pongratz T, Khoder W, Stief CG, Herrmann T, Nagele U, Sroka R (2014) Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World J Urol. doi:10.1007/s00345-014-1429-8

    PubMed  PubMed Central  Google Scholar 

  36. Nicklas AP, Schilling D, Bader MJ, Herrmann TR, Nagele U (2015) The vacuum cleaner effect in minimally invasive percutaneous nephrolitholapaxy. World J Urol. doi:10.1007/s00345-015-1541-4

    Google Scholar 

  37. Sabnis RB, Ganesamoni R, Doshi A, Ganpule AP, Jagtap J, Desai MR (2013) Micropercutaneous nephrolithotomy (microperc) vs retrograde intrarenal surgery for the management of small renal calculi: a randomized controlled trial. BJU Int 112(3):355–361. doi:10.1111/bju.12164

    Article  PubMed  Google Scholar 

  38. Saglam R, Muslumanoglu AY, Tokatli Z, Caskurlu T, Sarica K, Tasci AI, Erkurt B, Suer E, Kabakci AS, Preminger G, Traxer O, Rassweiler JJ (2014) A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b). Eur Urol 66(6):1092–1100. doi:10.1016/j.eururo.2014.06.047

    Article  PubMed  Google Scholar 

  39. Schatloff O, Lindner U, Ramon J, Winkler HZ (2010) Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. J Urol 183(3):1031–1035. doi:10.1016/j.juro.2009.11.013

    Article  PubMed  Google Scholar 

  40. John TT, Razdan S (2010) Adjunctive tamsulosin improves stone free rate after ureteroscopic lithotripsy of large renal and ureteric calculi: a prospective randomized study. Urology 75(5):1040–1042. doi:10.1016/j.urology.2009.07.1257

    Article  PubMed  Google Scholar 

  41. Magheli A, Semins MJ, Allaf ME, Matlaga BR (2012) Critical analysis of the miniaturized stone basket: effect on deflection and flow rate. J Endourol/Endourol Soc 26(3):275–277. doi:10.1089/end.2011.0166

    Article  Google Scholar 

  42. Schoenthaler M, Wilhelm K, Katzenwadel A, Ardelt P, Wetterauer U, Traxer O, Miernik A (2012) Retrograde intrarenal surgery in treatment of nephrolithiasis: is a 100% stone-free rate achievable? J Endourol/Endourol Soc 26(5):489–493. doi:10.1089/end.2011.0405

    Article  Google Scholar 

  43. Traxer O, Thomas A (2013) Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol 189(2):580–584. doi:10.1016/j.juro.2012.08.197

    Article  PubMed  Google Scholar 

  44. Ursiny M, Eisner BH (2013) Cost-effectiveness of anti-retropulsion devices for ureteroscopic lithotripsy. J Urol 189(5):1762–1766. doi:10.1016/j.juro.2012.11.085

    Article  PubMed  Google Scholar 

  45. Neisius A, Smith NB, Sankin G, Kuntz NJ, Madden JF, Fovargue DE, Mitran S, Lipkin ME, Simmons WN, Preminger GM, Zhong P (2014) Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Proc Natl Acad Sci USA 111(13):E1167–E1175. doi:10.1073/pnas.1319203111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maxwell AD, Cunitz BW, Kreider W, Sapozhnikov OA, Hsi RS, Harper JD, Bailey MR, Sorensen MD (2015) Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J Urol 193(1):338–344. doi:10.1016/j.juro.2014.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qiu J, Teichman JM, Wang T, Neev J, Glickman RD, Chan KF, Milner TE (2010) Femtosecond laser lithotripsy: feasibility and ablation mechanism. J Biomed Opt 15(2):028001. doi:10.1117/1.3368998

    Article  PubMed  Google Scholar 

  48. Cloutier J, Cordeiro ER, Kamphuis GM, Villa L, Letendre J, de la Rosette JJ, Traxer O (2014) The glue-clot technique: a new technique description for small calyceal stone fragments removal. Urolithiasis 42(5):441–444. doi:10.1007/s00240-014-0679-7

    Article  CAS  PubMed  Google Scholar 

  49. Tan YK, McLeroy SL, Faddegon S, Olweny E, Fernandez R, Beardsley H, Gnade B, Park S, Pearle MS, Cadeddu JA (2012) In vitro comparison of prototype magnetic tool with conventional nitinol basket for ureteroscopic retrieval of stone fragments rendered paramagnetic with iron oxide microparticles. J Urol 188(2):648–652. doi:10.1016/j.juro.2012.03.118

    Article  CAS  PubMed  Google Scholar 

  50. Desai MM, Grover R, Aron M, Ganpule A, Joshi SS, Desai MR, Gill IS (2011) Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol 186(2):563–568. doi:10.1016/j.juro.2011.03.128

    Article  PubMed  Google Scholar 

  51. Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, Fischer P (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8(9):8794–8801. doi:10.1021/nn502360t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author received financial support from the Medical Faculty of the University Freiburg.

Authors’ contribution

S. Hein and M. Schoenthaler were acknowledged for protocol/project development, data collection and management, data analysis, manuscript writing/editing. A. Miernik contributed to protocol/project development, manuscript writing/editing, and supervision. K. Wilhelm helped in protocol development, data collection and management, and data analysis. F. Adams and D. Schlager were helpful in data collection and management and data analysis. T.R.H. Herrmann and J. Rassweiler helped with data interpretation and supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Miernik.

Ethics declarations

Conflict of interest

Arkadiusz Miernik: consultant contract with Schoelly GmbH, Denzlingen, Germany. Thomas R. W. Herrmann: Declares Karl Storz GmBH, Honoraria, financial Support for attending Symposia, financial support for educational programs, Consultancy, Advisory, Royalties; Boston Scientific AG Honoraria, financial support for attending Symposia, financial support for educational programs, Consultancy, Advisory Board; LISA Laser OHG AG Honoraria, financial support for attending Symposia, financial support for educational programs; Ipsen Pharma Honoraria, financial support for attending Symposia, Advisory Board. Martin Schoenthaler: consultant contract with Schoelly GmbH, Denzlingen, Germany, and NeoTract Inc., Pleasanton, USA. Other authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hein, S., Miernik, A., Wilhelm, K. et al. Clinical significance of residual fragments in 2015: impact, detection, and how to avoid them. World J Urol 34, 771–778 (2016). https://doi.org/10.1007/s00345-015-1713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-015-1713-2

Keywords

Navigation