Skip to main content

Advertisement

Log in

Temporal expression of hyaluronic acid and hyaluronic acid receptors in a porcine small intestinal submucosa-augmented rat bladder regeneration model

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Hyaluronic acid (HA), a non-sulfated glycosaminoglycan, is an essential component of the extracellular matrix (ECM). Since HA is involved in many phases of wound healing and may play a key role in tissue repair and regeneration, this study was intended to understand temporal and spatial expression of HA and HA receptors (HARs) during the course of bladder regeneration in rats.

Materials and methods

Sprague–Dawley rats were subjected to partial cystectomy followed by augmentation with porcine small intestinal submucosal (SIS) prepared from distal sections of the small intestine. SIS-augmented bladders were harvested between postoperative days 2 and 56.

Results

Bladder regeneration proceeded without complications. All augmented bladders had complete urothelial lining and smooth muscle bundles by day 56 post-augmentation. Temporal and spatial distributions of HA and HARs were studied by immunohistochemistry in regenerating bladders. The strongest HA immunoreactivity was observed in the ECM on postoperative days 28 and 56. Cluster of differentiation 44 (CD44) immunoreactivity was detected in the cytoplasm of urothelial cells on day 56; and LYVE-1 immunoreactivity was exclusively limited to lymphatic vessels on days 28 and 56.

Conclusions

We demonstrated that HA was synthesized throughout the course of bladder wound healing and regeneration; and HA deposition coincided with urothelial differentiation. Expression of CD44 and LYVE-1 followed the same temporal pattern as HA deposition. Therapeutic modalities through local delivery of exogenous HA to improve the outcome of SIS-mediated bladder regeneration might need to be coordinated with HAR expression in order to achieve maximal regenerative responses as opposed to fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CD44:

Cluster of differentiation 44

ECM:

Extracellular matrix

HA:

Hyaluronic acid

HABP:

Hyaluronan binding protein

HARE:

Hyaluronan receptor for endocytosis

LYVE-1:

Lymphatic vessel endothelial receptor 1

RHAMM:

Receptor for hyaluronan-mediated motility

SIS:

Small intestinal submucosa

References

  1. Saari H, Konttinen YT (1989) Determination of synovial fluid hyaluronate concentration and polymerisation by high performance liquid chromatography. Ann Rheum Dis 48(7):565–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Saari H, Konttinen YT, Friman C, Sorsa T (1993) Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate. Inflamm 17(4):403–415

    Article  CAS  Google Scholar 

  3. Reitinger S, Lepperdinger G (2013) Hyaluronan, a ready choice to fuel regeneration: a mini-review. Gerontology 59(1):71–76

    Article  CAS  PubMed  Google Scholar 

  4. Mondalek FG, Ashley RA, Roth CC, Kibar Y, Shakir N, Ihnat MA, Fung KM, Grady BP, Kropp BP, Lin HK (2010) Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronic acid-poly(lactide-co-glycolide) nanoparticles: from fabrication to preclinical validation. J Biomed Mater Res A 94(3):712–719

    PubMed  Google Scholar 

  5. Siebert JW, Burd AR, McCarthy JG, Weinzweig J, Ehrlich HP (1990) Fetal wound healing: a biochemical study of scarless healing. Plast Reconstr Surg 85(4):495–502

    Article  CAS  PubMed  Google Scholar 

  6. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144(4):789–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhou B, Weigel JA, Fauss L, Weigel PH (2000) Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem 275(48):37733–37741

    Article  CAS  PubMed  Google Scholar 

  8. Park D, Kim Y, Kim H, Kim K, Lee YS, Choe J, Hahn JH, Lee H, Jeon J, Choi C, Kim YM, Jeoung D (2012) Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol Cells 33(6):563–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rein DT, Roehrig K, Schondorf T, Lazar A, Fleisch M, Niederacher D, Bender HG, Dall P (2003) Expression of the hyaluronan receptor RHAMM in endometrial carcinomas suggests a role in tumour progression and metastasis. J Cancer Res Clin Oncol 129(3):161–164

    CAS  PubMed  Google Scholar 

  10. Li H, Chen C, Zhang S, Jiang J, Tao H, Xu J, Sun J, Zhong W, Chen S (2012) The use of layer by layer self-assembled coatings of hyaluronic acid and cationized gelatin to improve the biocompatibility of poly(ethylene terephthalate) artificial ligaments for reconstruction of the anterior cruciate ligament. Acta Biomater 8(11):4007–4019

    Article  CAS  PubMed  Google Scholar 

  11. Kajahn J, Franz S, Rueckert E, Forstreuter I, Hintze V, Moeller S, Simon JC (2012) Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter 2(4):226–273

    Article  PubMed Central  PubMed  Google Scholar 

  12. Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS (2013) Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 34(15):3775–3783

    Article  CAS  PubMed  Google Scholar 

  13. Roth CC, Mondalek FG, Kibar Y, Ashley RA, Bell CH, Califano JA, Madihally SV, Frimberger D, Lin HK, Kropp BP (2011) Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU Int 108(1):148–155

    Article  PubMed  Google Scholar 

  14. Ashley RA, Palmer BW, Schultz AD, Woodson BW, Roth CC, Routh JC, Fung KM, Frimberger D, Lin HK, Kropp B (2009) Leukocyte inflammatory response in a rat urinary bladder regeneration model using porcine small intestinal submucosa scaffold. Tissue Eng Part A 15(11):3241–3246

    Article  CAS  PubMed  Google Scholar 

  15. Ashley RA, Roth CC, Palmer BW, Kibar Y, Routh JC, Fung KM, Frimberger D, Lin HK, Kropp BP (2010) Regional variations in small intestinal submucosa evoke differences in inflammation with subsequent impact on tissue regeneration in the rat bladder augmentation model. BJU Int 105(10):1462–1468

    Article  PubMed  Google Scholar 

  16. Tateya T, Tateya I, Sohn JH, Bless DM (2006) Histological study of acute vocal fold injury in a rat model. Ann Otol Rhinol Laryngol 115(4):285–292

    Article  PubMed  Google Scholar 

  17. Oksala O, Salo T, Tammi R, Hakkinen L, Jalkanen M, Inki P, Larjava H (1995) Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem 43(2):125–135

    Article  CAS  PubMed  Google Scholar 

  18. Molander N, Lindquist U, Stenevi U, von Malmborg A, Ehinger B (1993) Influence of radial keratotomy on endogenous hyaluronan in cornea and aqueous humour. Refract Corneal Surg 9(5):358–365

    CAS  PubMed  Google Scholar 

  19. Kobayashi H, Terao T (1997) Hyaluronic acid-specific regulation of cytokines by human uterine fibroblasts. Am J Physiol 273(4 Pt 1):C1151–C1159

    CAS  PubMed  Google Scholar 

  20. Wisniewski HG, Hua JC, Poppers DM, Naime D, Vilcek J, Cronstein BN (1996) TNF/IL-1-inducible protein TSG-6 potentiates plasmin inhibition by inter-α-inhibitor and exerts a strong anti-inflammatory effect in vivo. J Immunol 156(4):1609–1615

    CAS  PubMed  Google Scholar 

  21. Toole BP (1997) Hyaluronan in morphogenesis. J Intern Med 242(1):35–40

    Article  CAS  PubMed  Google Scholar 

  22. Alho AM, Underhill CB (1989) The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol 108(4):1557–1565

    Article  CAS  PubMed  Google Scholar 

  23. Maytin EV, Chung HH, Seetharaman VM (2004) Hyaluronan participates in the epidermal response to disruption of the permeability barrier in vivo. Am J Pathol 165(4):1331–1341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Roth CC, Bell CH, Woodson B, Schultz AD, Palmer BW, Frimberger D, Fung KM, Lin HK, Kropp BP (2009) Temporal differentiation and maturation of regenerated rat urothelium. BJU Int 103(6):836–841

    Article  PubMed  Google Scholar 

  25. Witt M, Kasper M (1998) Immunohistochemical distribution of CD44 and some of its isoforms during human taste bud development. Histochem Cell Biol 110(1):95–103

    Article  CAS  PubMed  Google Scholar 

  26. Bourguignon LY, Ramez M, Gilad E, Singleton PA, Man MQ, Crumrine DA, Elias PM, Feingold KR (2006) Hyaluronan-CD44 interaction stimulates keratinocyte differentiation, lamellar body formation/secretion, and permeability barrier homeostasis. J Invest Dermatol 126(6):1356–1365

    Article  CAS  PubMed  Google Scholar 

  27. Kaya G, Rodriguez I, Jorcano JL, Vassalli P, Stamenkovic I (1997) Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev 11(8):996–1007

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Thor AD, Moore DH, Zhao Y, Kerschmann R, Stern R, Watson PH, Turley EA (1998) The overexpression of RHAMM, a hyaluronan-binding protein that regulates ras signaling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer progression. Clin Cancer Res 4(3):567–576

    CAS  PubMed  Google Scholar 

  29. Brown AL, Srokowski EM, Shu XZ, Prestwich GD, Woodhouse KA (2006) Development of a model bladder extracellular matrix combining disulfide cross-linked hyaluronan with decellularized bladder tissue. Macromol Biosci 6(8):648–657

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a P20 research grant awarded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK, 5P20DK097799-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huesh-Kung Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondalek, F.G., Fung, KM., Yang, Q. et al. Temporal expression of hyaluronic acid and hyaluronic acid receptors in a porcine small intestinal submucosa-augmented rat bladder regeneration model. World J Urol 33, 1119–1128 (2015). https://doi.org/10.1007/s00345-014-1403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-014-1403-5

Keywords

Navigation