Skip to main content
Log in

Comparative Transcriptome Analysis of Hypocotyls During the Developmental Transition of C3 Cotyledons to C4 Leaves in Halimocnemis mollissima Bunge

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Identification of signaling pathways that control C4 photosynthesis development is essential for introducing the C4 pathway into C3 crops. Species with dual photosynthesis in their life cycle are interesting models to study such regulatory mechanisms. The species used here Halimocnemis mollissima Bunge, belonging to the Caroxyleae tribe, displays C3 photosynthesis in its cotyledons and a NAD-ME subtype of C4 photosynthesis in the First leaves (FLs) onwards. We explored the long-distance signaling pathways that are probably implicated in the shoot–root coordination associated with the manifestation of the C4 traits, including efficient resource usage by comparing the mRNA content of hypocotyls before and after the C4 first leave’s formation. Histological examination showed the presence of C3 anatomy in cotyledons and C4 anatomy in the FLs. Our transcriptome analyses verified the performance of the NAD-ME subtype of C4 in FLs and revealed differential transcript abundance of several potential mobile regulators and their associated receptors or transporters in two developmentally different hypocotyls of H. mollissima Bunge. These differentially expressed genes (DEGs) belong to diverse functional groups, including various transcription factor (TF) families, phytohormones metabolism, and signaling peptides, part of which could be related to hypocotyl development. Our findings support the higher nitrogen and water use efficiency associated with C4 photosynthetic and provide insights into the coordinated above- and under-ground tissue communication during the developmental transition of C3–C4 photosynthesis in this species.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TF:

Transcription factor

DEG:

Differentially expressed gene

FLs:

First leaves

PEPC:

Phosphoenolpyruvate carboxylase

BCA:

Beta-carbonic anhydrase

PPdK:

Pyruvate orthophosphate dikinase

Asp-AT:

Aspartate aminotransferas

Ala-AT:

Alanine aminotransferase

NAD-ME:

NAD-dependent malic enzyme

NADP-ME:

NADP-dependent malic enzyme

TPT:

Triosephosphate translocator

PPase6:

Pyrophosphatase

PPdK-RP1:

Pyruvate orthophosphate dikinase-related protein1

PPT2:

PEP/phosphate translocator

BASS4:

Bile acid:sodium symporter family protein

BASS2:

Bile acid:sodium symporter family protein

AMK2:

Adenosine monophosphate kinase

HY5:

Elongated hypocotyl 5

SHR:

Short-root

References

  • Akhani H et al (2009) Does Bienertia cycloptera with the single-cell system of C4 photosynthesis exhibit a seasonal pattern of δ13C values in nature similar to co-existing C4 Chenopodiaceae having the dual-cell (Kranz) system? Photosynth Res 99(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Argyros RD et al (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20(8):2102–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartusch K, Melnyk CW (2020) Insights into plant surgery: an overview of the multiple grafting techniques for Arabidopsis Thaliana. Front Plant Sci 2020:2000

    Google Scholar 

  • Behr M et al (2018) Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biol 18(1):1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellstaedt J et al (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180(2):757–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burko Y et al (2020) Local HY5 activity mediates hypocotyl growth and shoot-to-root communication. Plant Commun 1(5):100078

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X et al (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26(5):640–646

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  CAS  PubMed  Google Scholar 

  • Cui H (2021) Challenges and approaches to crop improvement through C3-to-C4 engineering. Front Plant Sci 2021:1851

    Google Scholar 

  • Dolan L (2001) Root patterning: SHORT ROOT on the move. Curr Biol 11(23):R983–R985

    Article  CAS  PubMed  Google Scholar 

  • Dubbe DR, Farquhar GD, Raschke K (1978) Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata. Plant Physiol 62(3):413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima Z et al (2018) Resource use efficiencies of C3 and C4 cereals under split nitrogen regimes. Agronomy 8(5):69

    Article  Google Scholar 

  • Forde BG (2002) Local and long-range signaling pathways regulating plant responses to nitrate. Annu Rev Plant Biol 53(1):203–224

    Article  CAS  PubMed  Google Scholar 

  • Freitag H, Kadereit G (2014) C3 and C4 leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). Plant Syst Evol 300(4):665–687

    Article  Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69(4):437–449

    Article  CAS  PubMed  Google Scholar 

  • Gangappa SN, Botto JF (2016) The multifaceted roles of HY5 in plant growth and development. Mol Plant 9(10):1353–1365

    Article  CAS  PubMed  Google Scholar 

  • Gerlich SC et al (2018) Sulfate metabolism in C4 Flaveria species is controlled by the root and connected to serine biosynthesis. Plant Physiol 178(2):565–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Gowik U et al (2011) Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4? Plant Cell 23(6):2087–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas B, Papanicolaou A (2016) TransDecoder (find coding regions within transcripts). Google Scholar (Preprint)

  • Harris JM, Ondzighi-Assoume CA (2017) Environmental nitrate signals through abscisic acid in the root tip. Plant Signal Behav 12(1):e1273303

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibberd JM, Covshoff S (2010) The regulation of gene expression required for C4 photosynthesis. Annu Rev Plant Biol 61:181–207

    Article  CAS  PubMed  Google Scholar 

  • Hirner A et al (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18(8):1931–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huai J, Jing Y, Lin R (2020) Functional analysis of ZmCOP1 and ZmHY5 reveals conserved light signaling mechanism in maize and Arabidopsis. Physiol Plant 169(3):369–379

    Article  CAS  PubMed  Google Scholar 

  • Huang C-F et al (2017) Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves. Proc Natl Acad Sci 114(33):E6884–E6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huxman TE, Monson RK (2003) Stomatal responses of C3, C3–C4 and C4Flaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour. Plant, Cell Environ 26(2):313–322

    Article  CAS  Google Scholar 

  • Jobe TO et al (2020) Ensuring nutritious food under elevated CO2 conditions: a case for improved C4 crops. Front Plant Sci 11:1267

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang J et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107(5):2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J et al (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6(1):1–10

    Article  Google Scholar 

  • Kiba T et al (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62(4):1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Ko D, Helariutta Y (2017) Shoot–root communication in flowering plants. Curr Biol 27(17):R973–R978

    Article  CAS  PubMed  Google Scholar 

  • Koenig AM, Hoffmann-Benning S (2020) The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 40(10):1

    Article  Google Scholar 

  • Kuromori T, Seo M, Shinozaki K (2018) ABA transport and plant water stress responses. Trends Plant Sci 23(6):513–522

    Article  CAS  PubMed  Google Scholar 

  • Lauterbach M, Billakurthi K et al (2017a) C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of Salsola soda (Chenopodiaceae). J Exp Bot 68(2):161–176

    Article  CAS  PubMed  Google Scholar 

  • Lauterbach M, Schmidt H et al (2017b) De novo transcriptome assembly and comparison of C3, C3–C4, and C4 species of tribe Salsoleae (Chenopodiaceae). Front Plant Sci 8:1939

    Article  PubMed  PubMed Central  Google Scholar 

  • Legris M et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354(6314):897–900

    Article  CAS  PubMed  Google Scholar 

  • Lescot M et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12(1):1–16

    Article  Google Scholar 

  • Li H et al (2015a) Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct Plant Biol 42(11):1080–1091

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2015b) Developmental genetic mechanisms of C4 syndrome based on transcriptome analysis of C3 cotyledons and C4 assimilating shoots in Haloxylon ammodendron. PLoS ONE 10(2):e0117175

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C-J, Zhao Y, Zhang K (2019) Cytokinin transporters: multisite players in cytokinin homeostasis and signal distribution. Front Plant Sci 2019:693

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lohse M et al (2014) M ercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Wiley, London

    Google Scholar 

  • McKown AD, Dengler NG (2007) Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae). Am J Bot 94(3):382–399

    Article  PubMed  Google Scholar 

  • Nishizawa-Yokoi A et al (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52(5):933–945

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo Y et al (2017) Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants 3(4):1–6

    Article  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11(22):2983–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao X, Dixon RA (2016) The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: more than decarboxylating enzymes. Front Plant Sci 7:1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyna-Llorens I, Hibberd JM (2017) Recruitment of pre-existing networks during the evolution of C4 photosynthesis. Philos Trans R Soc B Biol Sci 372(1730):20160386

    Article  Google Scholar 

  • Roach MJ, Deyholos MK (2008) Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fibre differentiation. Ann Bot 102(3):317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  • Rudov A et al (2020) A review of C4 plants in southwest Asia: an ecological, geographical and taxonomical analysis of a region with high diversity of C4 eudicots. Front Plant Sci 11:1374

    Article  Google Scholar 

  • Ruffel S et al (2008) Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. Plant Physiol 146(4):2020–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadanandom A et al (2012) The ubiquitin–proteasome system: central modifier of plant signalling. New Phytol 196(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161(2):341–370

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Kleine-Vehn J (2019) PIN-FORMED and PIN-LIKES auxin transport facilitators. Development 146(15):dev168088

    Article  CAS  PubMed  Google Scholar 

  • Schwacke R et al (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12(6):879–892

    Article  CAS  PubMed  Google Scholar 

  • Shabala S et al (2015) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43(2):87–104

    Article  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Siadjeu C, Lauterbach M, Kadereit G (2021) Insights into regulation of C2 and C4 photosynthesis in Amaranthaceae/Chenopodiaceae using RNA-Seq. Int J Mol Sci 22(22):12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slewinski TL (2013) Using evolution as a guide to engineer Kranz-type C4 photosynthesis. Front Plant Sci 4:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slewinski TL et al (2012) Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiol 53(12):2030–2037

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zheng N (2015) Molecular mechanism underlying the plant NRT1. 1 dual-affinity nitrate transporter. Front Physiol 6:386

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabata R et al (2014) Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346(6207):343–346

    Article  CAS  PubMed  Google Scholar 

  • Tian Q et al (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165(9):942–951

    Article  CAS  PubMed  Google Scholar 

  • To JPC et al (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16(3):658–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno O (1998) Induction of Kranz anatomy and C4-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10(4):571–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usadel B et al (2006) PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics 7(1):1–8

    Article  Google Scholar 

  • Vogan PJ, Sage RF (2011) Water-use efficiency and nitrogen-use efficiency of C3–C4 intermediate species of Flaveria Juss. (Asteraceae). Plant, Cell Environ 34(9):1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2014) Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nat Biotechnol 32(11):1158–1165

    Article  PubMed  Google Scholar 

  • Wang P, Vlad D, Langdale JA (2016) Finding the genes to build C4 rice. Curr Opin Plant Biol 31:44–50

    Article  CAS  PubMed  Google Scholar 

  • Wang C-T et al (2018) The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci 19(9):2580

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia C et al (2018) Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system. Plant Physiol 177(2):745–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamawaki S et al (2011) Functional characterization of HY5 homolog genes involved in early light-signaling in Physcomitrella patens. Biosci Biotechnol Biochem 75(8):1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2014) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7(10):1522–1532

    Article  CAS  PubMed  Google Scholar 

  • Zhao H et al (2017) The Arabidopsis thaliana nuclear factor Y transcription factors. Front Plant Sci 7:2045

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Stanislav Kopriva (University of Cologne) for the critical reading of the manuscript. We also would like to thank Alexander Rudov and Hossein Akhani (University of Tehran) for their support during seed collection.

Funding

A.M.B-M gratefully acknowledges the financial support from the Iran National Science Foundation (INSF) (Funding Reference No. 95838484).

Author information

Authors and Affiliations

Authors

Contributions

MZ performed the experiments, analyzed data, and wrote the original draft. TR performed the microscopic analysis and critically revised the manuscript. MRG analyzed data. AMB-M conceived and designed the research, supervised the experiment, and critically revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Mohammad Reza Ghaffari or Ali Mohammad Banaei-Moghaddam.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Golam Jalal Ahammed.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

. Primers and their sequences (PDF 62 kb)

Supplementary file 2

. The accession number of raw sequences uploaded to National Center for Biotechnology Information. (PDF 6 kb)

Supplementary file 3

. Summary of A sequencing information. B De novo transcriptome assembly results by Trinity. (PDF 9 kb)

Supplementary file 4

. Active functional classes in the First leaves, hypocotyl A and hypocotyl B. (XLSX 13 kb)

Supplementary file 5

. Abundance (total mean TPM) of C4-related proteins and genes categorized in the CRP and NCRP signaling peptide groups (XLSX 13 kb)

Supplementary file 6

. Transcript abundance, statistics of differentially expressed genes, and their annotations. (XLSX 2683 kb)

Supplementary file 7

. Venn diagram analysis of DEGs of two developmental H. mollissima's hypocotyls and identified genes related to the hypocotyl developments in flax (Roach and Deyholos 2008) and hemp (Behr et al. 2018) based on their assigned Arabidopsis ID (PDF 237 kb)

Supplementary file 8

. List of the unique and shared genes compared to DEGs of two developmental H. mollissima's hypocotyls and identified genes related to the hypocotyl developments in flax (Roach and Deyholos 2008) and hemp (Behr et al. 2008) based on their assigned Arabidopsis ID. (XLSX 65 kb)

Supplementary file 9

. Functional analysis of the Cell signaling genes using Mapman. (XLSX 202 kb)

Supplementary file 10

. Differentially transcription factor genes between hypocotyl A and hypocotyl B using PlantTFDB v5.0. (XLSX 29 kb)

Supplementary file 11

. Cis-elements located upstream of orthologous transcription factor genes with mobile mRNA in Arabidopsis. (XLSX 12 kb)

Supplementary file 12

. Validation of RNA-Seq results using quantitative RT-PCR (qRT-PCR) (PDF 207 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghar, M., Rutten, T., Ghaffari, M.R. et al. Comparative Transcriptome Analysis of Hypocotyls During the Developmental Transition of C3 Cotyledons to C4 Leaves in Halimocnemis mollissima Bunge. J Plant Growth Regul 43, 1076–1092 (2024). https://doi.org/10.1007/s00344-023-11162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11162-1

Keywords

Navigation