Skip to main content
Log in

Microbiological Control of Xanthomonas Induced Bacterial Leaf Streak Disease of Wheat via Phytocompounds and ROS Processing Enzymes Produced Under Biotic Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Common wheat, consumed widely as a human food is severely affected by biotic stresses. The use of plant beneficial bacteria in the management of biotic stresses is increasing due to its abundance, low inoculant production cost and no environmental risks. This study assessed the impact of bacterial phytopathogen, Xanthomonas sp. on the performance of wheat including phytocompound production and evaluated the biocontrol potential of beneficial rhizobacteria against Xanthomonas induced bacterial leaf streak (BLS) disease. The rhizobacteria, Azotobacter chroococcum Beijerinck, Bacillus megaterium, and Pseudomonas fluorescens produced biocontrol related antimicrobial compounds (ammonia and hydrogen cyanide) and hydrolytic enzymes (cellulase and amylase). In-planta, infected plants had visible BLS symptoms which included yellowing of leaves and necrotic lesions etc. Upon foliar inoculation, Xanthomonas sp. adversely affected growth and significantly reduced dry biomass, plant length, total chlorophyll content and seed yield by 42%, 26%, 59%, and 16%, respectively, over uninfected control. The Xanthomonas infection significantly enhanced the secretion of non-enzymatic and enzymatic phytocompounds, proline, malondialdehyde and reactive oxygen species (ROS) processing enzymes, catalase, superoxide dismutase and glutathione reductase in BLS wheat. Scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) showed cellular damage in Xanthomonas infected leaf tissues. The bacterial inoculations profoundly enhanced the biological and physiological growth of stressed wheat plants but significantly declined the production of phytocompounds and the activity of the three ROS processing enzymes. These findings demonstrate that microbial antagonists, A. chroococcum, B. megaterium, and P. fluorescens, endowed with potential biocontrol activity provides a promising option for the long-term management of BLS disease, optimize wheat production and fulfil human food demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aasfar A, Bargaz A, Yaakoubi K, Hilali A, Bennis I, Zeroual Y, Meftah Kadmiri I (2021) Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front Microbiol 12:628379

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad M, Pataczek L, Hilger TH (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9:2992

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microbiol Biotechnol 7:196–208

    Article  CAS  Google Scholar 

  • Ahmed B, Syed A, Rizvi A, Shahid M, Bahkali AH, Khan MS, Musarrat J (2021) Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM. Environ Poll 269:116218

    Article  CAS  Google Scholar 

  • Akram S, Ayyub CM, Shahzad M, Shahzad A (2021) Role of proline in mitigating the deleterious effects of heat stress in chillies. Contemp Agric 70:28–35

    Article  Google Scholar 

  • Alché JDD (2019) A concise appraisal of lipid oxidation and lipoxidation in higher plants. Redox Biol 23:101136

    Article  PubMed  PubMed Central  Google Scholar 

  • Almaghrabi OA, Abdelmoneim TS, Albishri HM, Moussa TA (2014) Enhancement of maize growth using some plant growth promoting rhizobacteria (PGPR) under laboratory conditions. Life Sci J 11:764–772

    Google Scholar 

  • Alsaady MH, Salim HA, Aboud HM, Al-ani RA, Abdulrazzaq AK (2020) Impact of PGPR bacteria against crown rot disease on wheat. Sci Arch 1:89–97

    Article  Google Scholar 

  • Arnon DT (1949) Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Appl Environ Microbiol 55:1665–1669

    Google Scholar 

  • Attia MS, Abdelaziz AM, Al-Askar AA, Arishi AA, Abdelhakim AM, Hashem AH (2022) Plant growth-promoting fungi as biocontrol tool against fusarium wilt disease of tomato plant. J Fungi 8:775

    Article  CAS  Google Scholar 

  • Badiaa O, Yssaad HAR, Topcuoglu B (2020) Effect of heavy metals (copper and zinc) on proline, polyphenols and flavonoids content of tomato (Lycopersicon esculentum Mill). Springer, New York, NY, USA

    Google Scholar 

  • Bakala HS, Mandahal KS, Sarao LK, Srivastava P (2021) Breeding wheat for biotic stress resistance: Achievements, challenges, and prospects. In: Ansari M-u-R (ed) Current trends in wheat research. IntechOpen, UK

    Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Bathke KJ, Jochum CC, Yuen GY (2022) Biological control of bacterial leaf streak of corn using systemic resistance-inducing Bacillus strains. Crop Prot 155:105932

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to PAGE. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beer RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Article  Google Scholar 

  • Bhardwaj SK, Laura JS (2009) Antibacterial activity of some plant-extracts against plant pathogenic bacteria Xanthomonas campestris pv. campestris. Ind J Agric Res 43:26–31

    Google Scholar 

  • Chan JW, Goodwin PH (1999) The molecular genetics of virulence of Xanthomonas campestris. Biotechnol Adv 17:489–508

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Muhae-Ud-Din G, Liu T, Chen W, Liu C, Gao L (2021) Wheat varietal response to Tilletia controversa JG Kühn using qRT-PCR and laser confocal microscopy. Genes 12:425

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherkupally R, Amballa H, Reddy BN (2017) In vitro screening for enzymatic activity of Trichoderma species for biocontrol potential. Ann Plant Sci 6:1784–1789

    Article  Google Scholar 

  • Cushnie T, Cushnie B, Lamb A (2014) Alkaloids: An overview of their antibacterial, antibiotic enhancing and antivirulence activities. Int J Antimicrobial Agents 44:377–386

    Article  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gafney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Sci 266:1247–1250

    Article  ADS  CAS  Google Scholar 

  • Dikilitas M, Simsek E, Roychoudhury A (2020) Role of proline and glycine betaine in overcoming abiotic stresses. In: Roychoudhury A, Tripathi DK (eds) Protective chemical agents in the amelioration of plant abiotic stress: Biochemical and Molecular Perspectives. Wiley, Hoboken, pp 1–23

    Google Scholar 

  • Din I, Khan H, Khan NA, Khil A (2021) Inoculation of nitrogen fixing bacteria in conjugation with integrated nitrogen sources induced changes in phenology, growth, nitrogen assimilation and productivity of wheat crop. J Saudi Soc Agric Sci 20:459–466

    Google Scholar 

  • dos Santos RM, Diaz PA, Lobo LL, Rigobelo EC (2020) Use of plant growth-promoting rhizobacteria in maize and sugarcane: Characteristics and applications. Front Sustain Food Sys 4:136

    Article  Google Scholar 

  • Duveiller E (1994) A pictorial series of disease assessment keys for bacterial leaf streak of cereals. Plant Dis 78:137–141

    Article  Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. Nat Sci 5:393–416

    Google Scholar 

  • Efthimiadou A, Katsenios N, Chanioti S, Giannoglou M, Djordjevic N, Katsaros G (2020) Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Sci Reports 10:21060

    ADS  CAS  Google Scholar 

  • El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A (2020) How does proline treatment promote salt stress tolerance during crop plant development? Front Plant Sci 11:1127

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Sorady GA, El-Banna AAA, Abdelghany AM, Salama EAA, Ali HM, Siddiqui MH, Hayatu NG, Paszt LS, Lamlom SF (2022) Response of bread wheat cultivars inoculated with Azotobacter species under different nitrogen application rates. Sustainability 14:8394

    Article  CAS  Google Scholar 

  • El-Wakil DA, Essa AM (2020) Antagonistic potential of some bacterial strains against Xanthomonas campestris, the cause of bacterial blight in Hordeum vulgare. BioRes 15:4205–4216

    Article  CAS  Google Scholar 

  • Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-Microbe Interaction 17:343–350

    Article  CAS  Google Scholar 

  • Fan S, Tian F, Li J et al (2016) Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system: Anti-virulence compounds for Xanthomonas oryzae. Mol Plant Pathol 18:555–586

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Riaz-ur-Rehman CMF (2009) Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8:219–225

    CAS  Google Scholar 

  • Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MA (2022) Proline, a multifaceted signaling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol 24:227–239

    Article  CAS  PubMed  Google Scholar 

  • Gul Jan F, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee IJ (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19:1–10

    Article  Google Scholar 

  • Hankin L, Anagnostakis SL (1975) The use of solid media for detection of enzyme production by fungi. Mycologia 67:597–607

    Article  Google Scholar 

  • He M, Ding NZ (2020) Plant unsaturated fatty acids: multiple roles in stress response. Front Plant Sci 11:562785

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Quiterio A, Toledo-Hernández E, Aguirre-Noyola JL, Romero Y, Ramos J, Palemón-Alberto F (2020) Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico. Rev Argent Microbiol 52:231–239

    PubMed  Google Scholar 

  • Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla Ł, Garnczarska M (2022) Contribution of exogenous proline to abiotic stresses tolerance in plants: A Review. Int J Mol Sci 23:5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ullah F, Zhou DX, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonski PB, Anderson JW (1978) Light-dependent reduction of oxidized glutathione by ruptured chloroplasts. Plant Physiol 61:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang K, Asami T (2018) Chemical regulators of plant hormones and their applications in basic research and agriculture. Biosci Biotechnol Biochem 82:1265–1300

    Article  CAS  PubMed  Google Scholar 

  • Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci 12:634796

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J (2022) How do plants defend themselves against pathogens-biochemical mechanisms and genetic interventions. Physiol Mol Biol Plants 28:485–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavi Kishor PB, Hima Kumari P, Sunita MS, Sreenivasulu N (2015) Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Front Plant Sci 6:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KH, Sayyed RZ, Enshasy HA (2019) Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 1–35

    Google Scholar 

  • Kishor KPB, Suravajhala P, Rathnagiri P, Sreenivasulu N (2022) Intriguing role of proline in redox potential conferring high temperature stress tolerance. Front Plant Sci 13:867531

    Article  Google Scholar 

  • Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawczyk K, Wielkopolan B, Obrępalska-Stęplowska A (2020) Pantoea ananatis, a new bacterial pathogen affecting wheat plants (Triticum L.) in Poland. Pathogens 9:1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krey T, Vassilev N, Baum C, Erichler-Lobermann B (2013) Effects of long-term phosphorus application and plant growth-promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124–130

    Article  CAS  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling cross talks between biotic and abiotic stress responses. Int J Mol Sci 19:3206

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Patel JS, Meena VS, Srivastava R (2019) Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocat Agric Biotechnol 20:101271

    Article  Google Scholar 

  • Kumar S, Sindhu SS, Kumar R (2022) Biofertilizers: An eco-friendly technology for nutrient recycling and environmental sustainability. Cur Res Microbial Sci 20:100094

    Article  Google Scholar 

  • Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, Dey A, Sheikh HI, Pathak SK, Edinur HA, Pati S (2021) Amylases: biofilm inducer or biofilm inhibitor? Front Cellular Infect Microbiol 11:660048

    Article  CAS  Google Scholar 

  • Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA (2022) Biological control of plant pathogens: A global perspective. Microorganisms 10:596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling T, Gao Q, Du H, Zhao Q, Ren J (2017) Growing, physiological responses and Cd uptake of corn (Zea mays L.) under different Cd supply. Chem Speciat Bioavailab 29:216–221

    Article  CAS  Google Scholar 

  • Liu Y, Dai C, Zhou Y, Qiao J, Tang B, Yu W, Zhang R, Liu Y, Lu SE (2021) Pyoverdines are essential for the antibacterial activity of Pseudomonas chlororaphis YL-1 under low-iron conditions. Appl Environ Microbiol 87:e02840-e2920

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas Garcia JA, Probanza A, Ramos B, Colon Flores JJ, Gutierrez Monero FJ (2004) Effects of plant growth promoting rhizobacteria (PGPR) on the biological nitrogen fixation, nodulation, and growth of Lupinus albus L. cv. multolupa. Eng Life Sci 4:71–77

    Article  Google Scholar 

  • Magaldi S, Mata-Essayag S, Hartung de Capriles C (2004) Well diffusion for antifungal susceptibility testing. Int J Infect Dis 8:39–45

    Article  CAS  PubMed  Google Scholar 

  • Majeed A, Muhammad Z, Ahmad H (2018) Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant Cell Rep 37:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Me Carty SC, Chauhan DS, MeCarty AD, Tripathi KM, Selvan T (2017) Effect of Azotobacter and phosphobacteria on yield of wheat (Triticum aestivum). Vegetos-an Intern J Plant Res 30:2

    Google Scholar 

  • Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay RS (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation, and its vital role in plants during variable environmental conditions. Heliyon 5:e02952

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta YR (2014) Wheat diseases and their management. Springer, Switzerland, p 256

    Book  Google Scholar 

  • Milus EA, Mirlohi AF (1993) A test tube assay for estimating populations of Xanthomonas campestris pv. translucens on individual wheat leaves. Phytopathol 83:134–139

    Article  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • MoA & FW. Ministry of Agriculture and Farmers Welfare, Government of India (2018) Available from: https://eands.dacnet.nic.in/Advance_ Estimate/4th_Adv_Estimates2017–18_ Eng.pdf

  • Morales M, Munné-Bosch S (2019) Malondialdehyde: Facts and artifacts. Plant Physiol 180:1246–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mota MS, Gomes CB, Souza IT, Moura AB (2017) Bacterial selection for biological control of plant disease: criterion determination and validation. Braz J Microbiol 48:62–70

    Article  CAS  PubMed  Google Scholar 

  • Mueller N (2018) Bacterial leaf streak more prevalent in winter wheat in 2018. Crop-watch. Available at https:// cropwatch.unl.edu/ 2018/ bacterial-leaf-streak-winter-wheat-more-prevalent-2018.

  • Mukherjee B, Anuroopa N, Maheswari NU (2017) Biochemical and molecular characterization of different Bacillus sp. from the rhizosphere soil of Withania somnifera. Int J Pharm Sci Rev Res 43:178–184

    CAS  Google Scholar 

  • Munir I, Bano A, Faisal M (2019) Impact of phosphate solubilizing bacteria on wheat (Triticum aestivum) in the presence of pesticides. Braz J Biol 79:29–37

    Article  CAS  PubMed  Google Scholar 

  • Öksel C, Balkan A, Bilgin O, Mirik M, Başer İ (2022) Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turk J Field Crops 27:127–133

    Article  Google Scholar 

  • Panchal KJ (2022) Identification of cellulase enzyme involved in biocontrol activity. Practical handbook on agricultural microbiology. Humana, New York, NY, pp 317–322

    Chapter  Google Scholar 

  • Pati BR, Chandra AK (1981) Effect of spraying nitrogen-fixing phyllospheric bacterial isolates on wheat plants. Plant Soil 61:419–427

    Article  Google Scholar 

  • Plunkett MH, Knutson CM, Barney BM (2020) Key factors affecting ammonium production by an Azotobacter vinelandii strain deregulated for biological nitrogen fixation. Microbial Cell Fact 19:1–2

    Article  Google Scholar 

  • Prasad JK, Gupta SK, Raghuwanshi R (2017) Screening multifunctional plant growth promoting rhizobacteria strains for enhancing seed germination in wheat (Triticum aestivum L.). Intern J Agric Res 12:64–72

    Article  CAS  Google Scholar 

  • Praveena R, Srekha K, Revathy R, Srinivasan V, Sarathambal C, George P, Subila KP, Dinesh R (2022) New rhizobacteria strains with effective antimycotic compounds against rhizome rot pathogens and identification of genes encoding antimicrobial peptides. Rhizosphere 22:100515

    Article  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b–2R and its GFP derivate in corn in a long-term trial. Symbiosis 69:123–129

    Article  CAS  Google Scholar 

  • Qiu H, Zhao X, Fang W, Wu H, Abubakar YS, Lu GD, Wang Z, Zheng W (2019) Spatiotemporal nature of Fusarium graminearum-wheat coleoptile interactions. Phytopathol Res 1:1–2

    Article  CAS  Google Scholar 

  • Rafiei V, Vélëz H, Tzelepis G (2021) The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. Int J Mol Sci 22:9359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Borah M (2021) Phytochemicals: Their role and mechanism in suppressing plant pathogenic bacteria. The Pharma Innov J 10:466–471

    Article  CAS  Google Scholar 

  • Rahman MME, Roy KK, Mustarin KE, Ali MS (2021) A comparative study of wheat leaf infection by Bipolaris sorokiniana on resistant and susceptible wheat varieties using scanning electron microscopy. Res J Plant Pathol 4(S1):001

    Google Scholar 

  • Raja NI, Rashid H, Khan MH, Chaudhry Z, Shah M, Bano A (2010) Screening of local wheat varieties against bacterial leaf streak caused by different strains of Xanthomonas translucens pv. undulosa (XTU). Pak J Bot 42:1601–1612

    Google Scholar 

  • Ramadas S, Kumar TK, Singh GP (2019) Wheat production in India: trends and prospects. In: Shah F, Khan Z, Iqbal A, Turan M, Olgun M (eds) Recent advances in grain crops research. IntechOpen, UK

    Google Scholar 

  • Ramakrishnan SM, Sidhu JS, Ali S, Kaur N, Wu J, Sehgal SK (2019) Molecular characterization of bacterial leaf streak resistance in hard winter wheat. Peer J 7:e7276

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos LD, Rodrigues EP, Silva MB, Oliveira JE, Zuluaga MY, Milani KM, Oliveira AL (2018) Ammonium excretion, auxin production and effects of maize inoculation with ethylenediamine-resistant mutants of Pseudomonas sp. Bragantia 77:415–428

    Article  CAS  Google Scholar 

  • Rayavarapu VGB, Padmavathi T (2016) Bacillus sp. as potential plant growth promoting rhizobacteria. Int J Adv Lif Sci 9:1

    Google Scholar 

  • Rehman AU, Bashir F, Ayaydin F, Kota ´ Z, et al (2020a) Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiol Plantarum 172:7–18

    Article  Google Scholar 

  • Rehman AU, Bashir F, Ayaydin F, Kóta Z (2020b) Proline is a quencher of singlet oxygen and superoxide both in in vitro systems and isolated thylakoids. Physiol Plant 172:7–18

    Article  PubMed  Google Scholar 

  • Rijavec T, Lapanje A (2017) Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants. Microbiol Res 194:20–28

    Article  CAS  PubMed  Google Scholar 

  • Rizvi A, Khan MS (2017) Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 185:942–952

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20

    Article  CAS  PubMed  Google Scholar 

  • Rizvi A, Ahmed B, Zaidi A, Khan MS (2019) Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Ecotoxicol 28:302–322

    Article  CAS  Google Scholar 

  • Rizvi A, Ahmed B, Khan MS, Umar S, Lee J (2021) Sorghum-phosphate solubilizers interactions: Crop nutrition, biotic stress alleviation, and yield optimization. Front Plant Sci 12:746780

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson RK (2014) Encyclopedia of food microbiology. Academic press, Cambridge

    Google Scholar 

  • Rodríguez-García MF, Huerta-Espino J, Villaseñor-Mir HE, Rivas-Valencia P, González-González M, Rosa HS, Robles-Yerena L, Aranda-Ocampo S (2020) Chemical treatment to wheat seed to reduce the incidence of bacteria. Revista Mexicana De Fitopatología 38:239–249

    Google Scholar 

  • Sapkota S, Mergoum M, Liu Z (2020) The translucens group of Xanthomonas translucens: Complicated and important pathogens causing bacterial leaf streak on cereals. Mol Plant Pathol 21:291–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarr PS, Tibiri EB, Fukuda M, Zongo AN, Nakamura S (2020) Phosphate-solubilizing fungi and alkaline phosphatase trigger the P solubilization during the co-composting of sorghum straw residues with Burkina Faso phosphate rock. Front Environ Sci 8:559195

    Article  Google Scholar 

  • Seybold H, Demetrowitsch TJ, Hassani M, Szymczak S, Reim E, Haueisen J, Lübbers L, Rühlemann M, Franke A, Schwarz K, Stukenbrock EH (2020) A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat Communic 11:1–2

    Google Scholar 

  • Sharma S, Chen C, Navathe S, Chand R, Pandey SP (2019) A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci Rep 9:1–7

    ADS  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Landi M (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium ciceri in chickpea. Microbiol Res 156:353–358

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Jha PN (2017) The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Sing S, Pandey GC (2020) Biotic stress on wheat: An Overview. Plant Stress Biol 9:241–250

    Google Scholar 

  • Spanic V, Vuletic MV, Abicic I, Marcek T (2017) Early response of wheat antioxidant system with special reference to Fusarium head blight stress. Plant Physiol Biochem 115:34–43

    Article  CAS  PubMed  Google Scholar 

  • Stanton JL (2019) Bacterial Leaf Streak of Wheat: Inoculation Methods and Epidemiology: A Master Thesis. Faculty of The University of Minnesota, USA

    Google Scholar 

  • Stromberg KD, Kinkel LL, Leonard KJ (2000) Interactions between Xanthomonas translucens pv. translucens, the causal agent of bacterial leaf streak of wheat, and bacterial epiphytes in the wheat phyllosphere. Biol Control 17:61–72

    Article  Google Scholar 

  • Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019:5080843

    Article  PubMed  PubMed Central  Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38:739–752

    Article  CAS  Google Scholar 

  • Tahjib-Ul-Arif M, Siddiqui MN, Sohag AAM, Sakil MA et al (2018) Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J Plant Growth Regul 37:1318–1330

    Article  CAS  Google Scholar 

  • Tarfeen N, Nisa Q, Khair-Ul-Nisa KK (2022) Antioxidant defense system in plants against biotic stress. In: Aftab T, Hakeem KR (eds) Antioxidant défense in plants. Springer, Singapore, pp 383–395

    Chapter  Google Scholar 

  • Taylor AG, Harman GE (1990) Concepts and technologies of selected seed treatments. Ann Rev Phytopathol 28:321–339

    Article  Google Scholar 

  • Tillman BL, Kursell WS, Harrison SA, Russin JS (1999) Yield loss caused by bacterial streak in winter wheat. Plant Dis 83:609–614

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva AM, Galyamova MR, Sedykh SE (2022) Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants 11:3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tubajika KM, Tillman BL, Russin JS, Harrison SA (1998) Relationship between flag leaf symptoms caused by Xanthomonas translucens pv. translucens and subsequent seed transmission in wheat. Plant Dis 82:1341–1344

    Article  Google Scholar 

  • Tubajika KM, Russin JS, Harrison SA (1999) Analysis of bacterial leaf streak epidemics on winter wheat in Louisiana. Plant Dis 83:541–548

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • USDA. United States Department of Agriculture [Internet]. (2018) Available from: http://www.fas.usda.gov.

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A (2020) Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: A review. Front Microbiol 11:560406

    Article  PubMed  PubMed Central  Google Scholar 

  • Waller JM, Lenne JM, Waller SJ (2002) Plant Pathologist’s Pocketbook, 3rd edn. CABI Publishing, New York., p 27

    Google Scholar 

  • Wang R, Wang M, Chen K, Wang S, Mur LA, Guo S (2018) Exploring the roles of aquaporins in plant–microbe interactions. Cells 7:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liu R, You MP, Barbetti MJ, Chen Y (2021) Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms 9:1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhang H, Liu L, Li S, Xie J, Xue X, Jiang Y (2022) Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiol 22:296

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Yang R, Li S, Li Y, Yan Y, Fang Y, Zou L, Chen G (2021) Bactericidal effect of Pseudomonas oryziphila sp. nov., a novel Pseudomonas species against xanthomonas oryzae reduces disease severity of bacterial leaf streak of rice. Front Microbiol 12:759536

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HM, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye W, Liu T, Zhang W, Li S, Zhu M, Li H, Kong Y, Xu L (2019) Disclosure of the molecular mechanism of wheat leaf spot disease caused by Bipolaris sorokiniana through comparative transcriptome and metabolomics analysis. Int J Mol Sci 20:6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizotrophic microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zandi P, Schnug E (2022) Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biol 11:155

    Article  CAS  Google Scholar 

  • Zhang N, Yuan S, Zhang Q, Liu W, Zhou Y, Yang W (2022) Screening fungicides for controlling wheat crown rot caused by Fusarium pseudograminearum across Hebei province in China. Agriculture 12:1643

    Article  CAS  Google Scholar 

  • Zhou H, Ren ZH, Zu X, Yu XY, Zhu HJ, Li XJ, Zhong J, Liu EM (2021) Efficacy of plant growth-promoting bacteria Bacillus cereus YN917 for biocontrol of rice blast. Front Microbiol 12:684888

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu CQ, Hu WJ, Cao XC, Zhu LF, Bai ZG, Huang J, Liang QD, Jin QY, Zhang JH (2020) Role of salicylic acid in alleviating the inhibition of root elongation by suppressing ethylene emission in rice under Al toxicity conditions. Plant Growth Regul 90:475–487

    Article  CAS  Google Scholar 

  • Zougrana S, Wonni I, Koïta K, Szurek B (2022) Elite local rice varieties resistant to bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola under field conditions in Burkina Faso. Afr J Agric Res 18:146–152

    Article  Google Scholar 

Download references

Acknowledgements

AR is highly thankful to the Grant Agency of the Department of Science and Technology (DST), Science and Engineering Research Board (SERB) for providing the National Post-Doctoral Fellowship (PDF/2020/000127). AR is also thankful to Central Instrument Facility, National Institute of Plant Genome Research, New Delhi for SEM analysis and CIF, Jamia Hamdard, New Delhi for confocal microscopy analysis.

Funding

This research was funded by the Department of Science and Technology under Science and Engineering Research Board (SERB) scheme, Grant No. PDF/2020/000127. The funders had no role in the design of the experiments; in the collection, analyses, or interpretation of the data; in the writing of the manuscript, or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Contributions

AR: Conceptualization, proposed the topic, assisted in the performance of the experiments, writing—original draft preparation, software-formal statistical analysis, figures, tables; data evaluation and validation; Rohini, and MHK: performed the experiments; BA: writing—review and editing, graphics, SU: supervision and editing; MSK: editing whole manuscript, data evaluation. All the authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Asfa Rizvi or Mohd. Saghir Khan.

Ethics declarations

Competing Interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Pramod kumar nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, A., Chandrawal, R., Khan, M.H. et al. Microbiological Control of Xanthomonas Induced Bacterial Leaf Streak Disease of Wheat via Phytocompounds and ROS Processing Enzymes Produced Under Biotic Stress. J Plant Growth Regul 43, 601–623 (2024). https://doi.org/10.1007/s00344-023-11119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11119-4

Keywords

Navigation