Skip to main content

Advertisement

Log in

Reconnoitering the Efficacy of Plant Growth Promoting Rhizobacteria in Expediting Phytoremediation Potential of Heavy Metals

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The abrupt release of heavy metals (HM) within environment by anthropogenic sources affect the living populations. Plants face many intricacies to survive under such conditions, therefore remediation of HM-contaminated soils is need of the hour. However, chemical processes are very costly and non-sustainable, henceforth HM-microbe associations play an integral role in reducing HM-stress from plants. Plants and microbes within rhizosphere are well adapted to metalliferous environment, thereby prove to be a best assistant for phytoremediation. Root exudates act as nutrients for microbes for establishment of inter-communication systems. Plant–microbe associations is a conducive dimension for phytoremediation, a low input, highly productive, and sustainable technology for maintaining HM-toxicity in soils. It is an emerging technology and is recommended for cleaning up the polluted sites, since plant growth promoting microbes (PGPM) have shown their effectively toward metal toxicity through their detoxification and resistance mechanisms along with growth promoting traits. Microbe-assisted phytoremediation is mainly facilitated either through direct or indirect manner. They synthesize various nutritional and phytohormonal substances namely, growth regulators, siderophores, enzymes, transformation of mineral nutrients (phosphate, potassium, nitrogen etc.). Further, they also modulate the metal detoxification, accumulation, and sequestration abilities of plants through secreting extracellular components, organic acids, biosurfactants, chelators etc. Besides, the metal bioavailability within soil is also modulated via different mechanisms like acidification, precipitation, complexation, or redox reactions. Apart from this, genetic engineering is a progressive approach that is combined with microbe-assisted phytoremediation to attain excellent results. The cumulative knowledge of transgenics, engineering designs, ecological knowledge is an essential element for phytoremediation using genetically engineered microbes. In this review, we have presented the advancement made hitherto for effective understanding of molecular, biochemical, and physiological mechanisms associated with plant–microbe interactions during phytoremediation. Along with this, we have shed light on the mechanisms involved in phytoremediation, therefore, this sustainable technology is widely accepted in reclaiming HM-toxicity to induce the yield and quality of soils and crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbaszadeh-Dahaji P, Omidvari M, Ghorbanpour M (2016) Increasing phytoremediation efficiency of heavy metal-contaminated soil using PGPR for sustainable agriculture. Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 187–204

    Google Scholar 

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420

    CAS  PubMed  Google Scholar 

  • Adiloğlu S (2017) Heavy metal removal with phytoremediation. In: Shiomi N (ed) Advances in bioremediation and phytoremediation. IntechOpen, London

    Google Scholar 

  • Agarwal P, Giri BS, Rani R (2020) Unravelling the role of rhizospheric plant-microbe synergy in phytoremediation: a genomic perspective. Curr Gen 21(5):334–342

    CAS  Google Scholar 

  • Ahmad N (2014) Konseling Agama: Terapi Terhadap Pengidap Penyakit Manusia Modern. Konseling Religi 5(1):1–20

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals: concepts and applications. Chemosphere 91(7):869–881

    CAS  PubMed  Google Scholar 

  • Ambrosini A, de Souza R, Passaglia LM (2016) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400(1–2):193–207

    CAS  Google Scholar 

  • Anjum S, Yousuf S, Mirza U (2022) Recent trends in transgenic plants for enhanced phytoremediation. Bioremediation and phytoremediation technologies in sustainable soil management. Apple Academic Press, Boca Raton, pp 241–261

    Google Scholar 

  • Anum W, Riaz U, Murtaza G, Raza MU (2022) Sustainable agroecosystems: recent trends and approaches in phytoremediation and rhizoremediation. Bioremediat Phytoremediat Technol Sustain Soil Manag 2022:185–204

    Google Scholar 

  • Arantza SJ, Hiram MR, Erika K, Chávez-Avilés MN, Valiente-Banuet JI, Fierros-Romero G (2022) Bio-and phytoremediation: plants and microbes to the rescue of heavy metal polluted soils. SN Appl Sci 4(2):1–14

    Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143

    CAS  Google Scholar 

  • Awa SH, Hadibarata T (2020) Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut 231(2):47

    CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483

    PubMed  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    CAS  Google Scholar 

  • Badri DV, Weir TL, Van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650

    CAS  PubMed  Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Lendeh KS (2017) Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecol Eng 103:164–169

    Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360(1):1–13

    CAS  Google Scholar 

  • Banwart S (2011) Save our soils. Nature 474(7350):151–152

    CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (Plant Growth-Promoting Bacteria) and PGPB. Soil Biol Biochem 30(8–9):1225–1228

    CAS  Google Scholar 

  • Basharat Z, Novo LA, Yasmin A (2018) Genome editing weds CRISPR: what is in it for phytoremediation? Plants 7(3):51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadauria R (2019) Arsenic toxicity: an overview. Horticult Int J 3(1):20–22

    Google Scholar 

  • Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A (2022) Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: opportunities, challenges, and prospects. Chemosphere 303:134954

    CAS  PubMed  Google Scholar 

  • Bhat BA, Tariq L, Nissar S, Islam ST, Islam SU, Mangral Z, Ilyas N, Sayyed RZ, Muthusamy G, Kim W, Dar TUH (2022) Unraveling the role of plant-associated rhizobacteria in plant growth, biocontrol, and abiotic stress management. J Appl Microbiol. https://doi.org/10.1111/jam.15796

    Article  PubMed  Google Scholar 

  • Bhattacharyya N, Anand U, Kumar R, Ghorai M, Aftab T, Jha NK, Rajapaksha AU, Bundschuh J, Bontempi E, Dey A (2022) Phytoremediation and sequestration of soil metals using the CRISPR/Cas9 technology to modify plants: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-022-01474-1

    Article  Google Scholar 

  • Bonilla A, Sarria ALF, Algar E, Ledesma FM, Solano BR, Fernandes JB, Mañero FG (2014) Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaver somniferum metabolism under greenhouse conditions. Plant Physiol Biochem 74:133–140

    CAS  PubMed  Google Scholar 

  • Breton-Deval L, Guevara-García A, Juarez K, Lara P, Rubio-Noguez D, Tovar-Sanchez E (2022) Role of rhizosphere microbiome during phytoremediation of heavy metals. Microbial biodegradation and bioremediation. Elsevier, Amsterdam, pp 263–291

    Google Scholar 

  • Brunetti G, Farrag K, Soler-Rovira P, Ferrara M, Nigro F, Senesi N (2012) The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma 170:322–330

    CAS  Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subba-Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry (Volume II). Science Publishers Inc, New York, pp 229–250

    Google Scholar 

  • Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413(1–2):203–216

    CAS  Google Scholar 

  • Chen JX, Cao Y, Yan X, Chen Y, Ma LQ (2021) Novel PvACR3; 2 and PvACR3; 3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation. J Hazard Mater 415:125647

    CAS  PubMed  Google Scholar 

  • Cheng Z, Chen LJ, Li HH, Lin JQ, Yang ZB, Yang YX, Zhu XM (2018) Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci Totl Environ 619:621–629

    Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. https://doi.org/10.1155/2014/752708

    Article  Google Scholar 

  • Choudhury D, Tarafdar S, Dutta S (2022) Plant growth promoting rhizobacteria (PGPR) and their eco-friendly strategies for plant growth regulation: a review. Plant Sci Today 9(3):524–537

    CAS  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Ann Rev Plant Biol 67:489–512

    CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53(1):159–182

    CAS  Google Scholar 

  • Cristaldi A, Conti GO, Cosentino SL, Mauromicale G, Copat C, Grasso A, Ferrante M (2020) Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Environ Res 185:109427

    CAS  PubMed  Google Scholar 

  • DalCorso G, Martini F, Fasani E, Manara A, Visioli G, Furini A (2021) Enhancement of Zn tolerance and accumulation in plants mediated by the expression of Saccharomyces cerevisiae vacuolar transporter ZRC1. Planta 253(6):1–17

    Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28(3):261–289

    CAS  PubMed  Google Scholar 

  • de Castro AP, Sartori da Silva MR, Quirino BF, Kruger RH (2013) Combining" omics" strategies to analyze the biotechnological potential of complex microbial environments. Curr Protein Peptide Sci 14(6):447–458

    Google Scholar 

  • Della Mónica IF, Wong Villarreal A, Stefanoni Rubio PJ, Vaca-Paulín R, Yañez-Ocampo G (2022) Exploring plant growth-promoting rhizobacteria as stress alleviators: a methodological insight. Arch Microbiol 204(6):1–20

    Google Scholar 

  • Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439

    CAS  PubMed  Google Scholar 

  • Dixit P, Singh S, Vancheeswaran R, Patnala K, Eapen S (2010) Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ 33(10):1697–1707

    CAS  PubMed  Google Scholar 

  • Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Horticul 234:431–444

    CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571

    Google Scholar 

  • Ely CS, Smets BF (2017) Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: implications for rhizodegradation. Int J Phytorem 19(10):877–883

    CAS  Google Scholar 

  • Enya O, Lin C, Qin J (2019) Heavy metal contamination status in soil-plant system in the Upper Mersey Estuarine Floodplain, Northwest England. Mar Pollut Bull 146:292–304

    CAS  PubMed  Google Scholar 

  • Fan M, Xiao X, Guo Y, Zhang J, Wang E, Chen W, Lin YG (2018) Enhanced phytoremdiation of Robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Chemosphere 197:729–740

    CAS  PubMed  Google Scholar 

  • Faria JM, Teixeira DM, Pinto AP, Brito I, Barrulas P, Alho L, Carvalho M (2020) Toxic levels of manganese in an acidic Cambisol alters antioxidant enzymes activity, element uptake and subcellular distribution in Triticum aestivum. Ecotoxicol Environ Saf 193:110355

    CAS  PubMed  Google Scholar 

  • Faust K, Raes J (2016) CoNet app: inference of biological association networks using Cytoscape. F1000Res 5:1519

    PubMed  PubMed Central  Google Scholar 

  • Feng Y (2022) Interactions among rhizosphere microorganisms, mechanisms and potential application in phytoremediation. SHS Web Conf 144:01003

    Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Appl Environ Microbiol 71(12):8627–8633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu XY, Zhao W, Xiong AS, Tian YS, Zhu B, Peng RH, Yao QH (2013) Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis. Appl Environ Microbiol 97(4):1799–1806

    CAS  Google Scholar 

  • Gavrilescu M (2022) Enhancing phytoremediation of soils polluted with heavy metals. Curr Opi Biotechnol 74:21–31

    CAS  Google Scholar 

  • Ghosh S, Singh K, Shaw AK, Azahar I, Adhikari S, Ghosh U, Basu U, Roy S, Saha S, Sherpa AR, Hossain Z (2017) Insights into the miRNA-mediated response of maize leaf to arsenate stress. Environ Exp Bot 137:96–109

    CAS  Google Scholar 

  • Gjorgieva Ackova D (2018) Heavy metals and their general toxicity on plants. Plant Sci Today 5(1):15–19

    Google Scholar 

  • Gómez-Garrido M, Mora Navarro J, Murcia Navarro FJ, Faz Cano Á (2018) The chelating effect of citric acid, oxalic acid, amino acids and Pseudomonas fluorescens bacteria on phytoremediation of Cu, Zn, and Cr from soil using Suaeda vera. Int J Phytorem 20(10):1033–1042

    Google Scholar 

  • Goswami M, Deka S (2020) Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: a review. Pedosphere 30(1):40–61

    CAS  Google Scholar 

  • Guarino F, Miranda A, Cicatelli A, Castiglione S (2020) Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 251:126310

    CAS  PubMed  Google Scholar 

  • Guo YC, Liu YY, Wang RY, Wang S, Lu XP, Wang B (2015) Effect of mercury stress on photosynthetic characteristics of two kinds of warm season turf grass. Int J Environ Monit Anal 3:293–297

    CAS  Google Scholar 

  • Gupta N, Khan DK, Santra SC (2010) Determination of public health hazard potential of wastewater reuse in crop production. World Rev Sci Technol Sustain Dev 7(4):328–340

    Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8(4):364–372

    CAS  Google Scholar 

  • Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Khan TA (2019) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities: a review. Environ Sci Pollut Res 26(13):12673–12688

    CAS  Google Scholar 

  • Hussain S, Rengel Z, Qaswar M, Amir M, Zafar-ul-Hye M (2019) Arsenic and heavy metal (cadmium, lead, mercury and nickel) contamination in plant-based foods. Plant and human health, vol 2. Springer, Cham, pp 447–490

    Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66(9):1670–1676

    CAS  PubMed  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    PubMed  PubMed Central  Google Scholar 

  • Jaffre T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamil M, Zeb S, Anees M, Roohi A, Ahmed I, ur-Rehman S, Rha ES (2014) Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytoremediat 16(6):554–571

    CAS  Google Scholar 

  • Javed MT, Tanwir K, Akram MS, Shahid M, Niazi NK, Lindberg S (2019) Phytoremediation of cadmium-polluted water/sedimentby aquatic macrophytes: role of plant-induced pH changes. In: Hasanuzzaman M, Prasad MNV, Fujita M (eds) Cadmium toxicity and tolerance in plants. Academic Press, London, pp 495–529

    Google Scholar 

  • Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H (2017) Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 168:1658–1668

    CAS  PubMed  Google Scholar 

  • Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H (2019) Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol Environ Saf 167:218–226

    CAS  PubMed  Google Scholar 

  • Jung HI, Kong MS, Lee BR, Kim TH, Chae MJ, Lee EJ, Kim YH (2019) Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate-glutathione homeostasis in rice seedlings. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01089

    Article  PubMed  PubMed Central  Google Scholar 

  • Kabeer R, PrveenKumar CS, Thomas AP, Radhakrishnan EK, Baiju KR (2022) Role of heavy metal tolerant rhizosphere bacteria in the phytoremediation of Cu and Pb using Eichhornia crassipes (Mart.) Solms. Int J Phytorem 24(11):1120–1132

    CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012

    CAS  PubMed  Google Scholar 

  • Kamran MA, Eqani SAMAS, Bibi S, Xu RK, Monis MFH, Katsoyiannis A, Chaudhary HJ (2016) Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPR) under nickel stress. Ecotoxicol Environ Saf 126:256–263

    CAS  PubMed  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Microbiol Biotechnol 73(19):6317–6320

    CAS  Google Scholar 

  • Kaur R, Yadav P, Thukral AK, Sharma A, Bhardwaj R, Alyemeni MN, Ahmad P (2018) Castasterone and citric acid supplementation alleviates cadmium toxicity by modifying antioxidants and organic acids in Brassica juncea. J Plant Growth Regul 37(1):286–299

    CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170(5):319–330

    CAS  PubMed  Google Scholar 

  • Khalid M, Saeed UR, Hassani D, Hayat K, Pei Z, Nan H (2021) Advances in fungal-assisted phytoremediation of heavy metals: a review. Pedosphere 31(3):475–495

    CAS  Google Scholar 

  • Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmed S, Ahmad A (2017) Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. Int J Phytoremediat 19(5):470–477

    CAS  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9(1):1–14

    Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta (BBA) 2:137–148

    Google Scholar 

  • Khursheed M, Wani KA, Rehman S, Manzoor J (2022) Omics and phytoremediation. phytoremediation. Academic Press, Cambridge, pp 179–194

    Google Scholar 

  • Kidd KA, Muir DC, Evans MS, Wang X, Whittle M, Swanson HK, Johnston T, Guildford S (2012) Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Sci Total Environ 438:135–143

    CAS  PubMed  Google Scholar 

  • Klonowska A, Moulin L, Ardley JK, Braun F, Gollagher MM, Zandberg JD, Woyke T (2020) Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genom 21(1):1–18

    Google Scholar 

  • Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R (2020) Current scenario of Pb toxicity in plants: unraveling plethora of physiological responses. Rev Environ Contam Toxicol 249:153–197

    CAS  PubMed  Google Scholar 

  • Kong Z, Wu Z, Glick BR, He S, Huang C, Wu L (2019) Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils. Ecotoxicol Environ Saf 183:109504

    CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342

    CAS  Google Scholar 

  • Kumar K, Shinde A, Aeron V, Verma A, Arif NS (2022a) Genetic engineering of plants for phytoremediation: advances and challenges. J Plant Biochem Biotechnol 2022:1–19. https://doi.org/10.1007/s13562-022-00776-3

    Article  CAS  Google Scholar 

  • Kumar R, Ivy N, Bhattacharya S, Dey A, Sharma P (2022b) Coupled effects of microplastics and heavy metals on plants: Uptake, bioaccumulation, and environmental health perspectives. Sci Total Environ 836:155619

    CAS  PubMed  Google Scholar 

  • Kumar S, Thakur N, Singh AK, Gudade BA, Ghimire D, Das S (2022c) Microbes-assisted phytoremediation of contaminated environment: global status, progress, challenges, and future prospects. Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water. Elsevier, Amsterdam, pp 555–570

    Google Scholar 

  • Kumari K, Cherian S, Bauddh K (2022) Microbial augmented phytoremediation with improved ecosystems services. Advances in microbe-assisted phytoremediation of polluted sites. Elsevier, Amsterdam, pp 27–62

    Google Scholar 

  • Kunjapur AM, Pfingstag P, Thompson NC (2018) Gene synthesis allows biologists to source genes from farther away in the tree of life. Nat Commun 9(1):1–11

    CAS  Google Scholar 

  • Laghlimi M, Baghdad B, Hadi HE, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5:375–388

    Google Scholar 

  • Lamine S, Petropoulos GP, Brewer PA, Bachari NEI, Srivastava PK, Manevski K, Macklin MG (2019) Heavy metal soil contamination detection using combined geochemistry and field spectroradiometry in the United Kingdom. Sensors 19(4):762

    PubMed  PubMed Central  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Sarret G (2014a) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    CAS  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cécillon L, Sarret G (2014b) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26

    CAS  PubMed  Google Scholar 

  • Liang J, Feng C, Zeng G, Gao X, Zhong M, Li X, Fang Y (2017) Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ Pollut 225:681–690

    CAS  PubMed  Google Scholar 

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50(13):6632–6643

    CAS  PubMed  Google Scholar 

  • Linacre NA, Whiting SN, Angle JS (2005) The impact of uncertainty on phytoremediation project costs. Int J Phytoremediat 7(4):259–269

    Google Scholar 

  • Liu Z, Tran KQ (2021) A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol Environ Saf 226:112821

    CAS  PubMed  Google Scholar 

  • Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. J Agric Food Chem 60(26):6524–6536

    CAS  PubMed  Google Scholar 

  • Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS ONE 10(6):e0128824

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Mi Y, Zhang J, Li Q, Chen L (2016) Illumina-based transcriptomic profiling of Panax notoginseng in response to arsenic stress. Bot Stud 57(1):1–11

    Google Scholar 

  • Liu C, Lin H, Li B, Dong Y, Menzembere ERGY (2021) Endophyte Pseudomonas putida enhanced Trifolium repens L. growth and heavy metal uptake: a promising in-situ non-soil cover phytoremediation method of nonferrous metallic tailing. Chemosphere 272:129816

    CAS  PubMed  Google Scholar 

  • Liu C, Li B, Dong Y, Lin H (2022a) Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. J Hazard Mater 434:128829

    CAS  PubMed  Google Scholar 

  • Liu D, Gao Z, Li J, Yao Q, Tan W, Xing W, Lu Z (2022b) Effects of cadmium stress on the morphology, physiology, cellular ultrastructure, and BvHIPP24 gene expression of sugar beet (Beta vulgaris L.). Int J Phytorem 2022:1–11. https://doi.org/10.1080/15226514.2022.2090496

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. Mol Microbial Ecol Rhizosphere 2:561–573

    CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93(7):1386–1392

    CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016a) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    PubMed  PubMed Central  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016cb) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813

    CAS  PubMed  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond Ser B Biol Sci 266(1434):2175–2179

    CAS  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328):58–63

    CAS  PubMed  Google Scholar 

  • Malik ZH, Ravindran KC, Ganesan S (2017) Phytoremediation: a novel strategy and eco-friendly green technology for removal of toxic metals. Int J Agric Environ Res 3(1):1–18

    Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manag 254:109779

    CAS  Google Scholar 

  • Mansoor S, Khan NF, Farooq I, Kaur N, Manhas S, Raina S, Khan IF (2022) Phytoremediation at molecular level. Phytoremediation. Academic Press, Cambridge, pp 65–90

    Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55(394):27–34

    CAS  PubMed  Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    CAS  Google Scholar 

  • Mashabela MD, Piater LA, Dubery IA, Tugizimana F, Mhlongo MI (2022) Rhizosphere tripartite interactions and PGPR-mediated metabolic reprogramming towards ISR and plant priming: a metabolomics review. Biology 11(3):346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (eds) (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi

    Google Scholar 

  • Mei X, Wang Y, Li Z, Larousse M, Pere A, da Rocha M, Zhan F, He Y, Pu L, Panabières F, Zu Y (2022) Root-associated microbiota drive phytoremediation strategies to lead of Sonchus Asper (L.) Hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. Environ Sci Pollut Res 29(16):23026–23040

    CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold W, Koeberl C, Przybyłowicz W, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheyacoddii. Acta Biol Cracoviensia Ser Bot 46:75–85

    Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    PubMed  PubMed Central  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86(3):459–474

    CAS  PubMed  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359

    CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    CAS  Google Scholar 

  • Nahar N, Rahman A, Nawani NN, Ghosh S, Mandal A (2017) Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J Plant Physiol 218:121–126

    CAS  PubMed  Google Scholar 

  • Navarro-Torre S, Carro L, Igual JM, del Carmen M-CM (2021) Rossellomorea arthrocnemi sp. Nov., a novel plant growth-promoting bacterium used in heavy metal polluted soils as a phytoremediation tool. Int J Syst Evol Microbiol 71(10):752. https://doi.org/10.1099/ijsem.0.005015

    Article  CAS  Google Scholar 

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediat 20(7):682–691

    CAS  Google Scholar 

  • Newman MA, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139

    PubMed  PubMed Central  Google Scholar 

  • Ngugi MM, Gitari HI, Muui CW, Gweyi-Onyango JP (2022) Growth tolerance, concentration, and uptake of heavy metals as ameliorated by silicon application in vegetables. Int J Phytoremediat 2022:1–14

    Google Scholar 

  • Ogunkunle CO, Odulaja DA, Akande FO, Varun M, Vishwakarma V, Fatoba PO (2020) Cadmium toxicity in cowpea plant: effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J Biotechnol 310:54–61

    CAS  PubMed  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    PubMed  PubMed Central  Google Scholar 

  • Pasricha S, Mathur V, Garg A, Lenka S, Verma K, Agarwal S (2021) Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: heavy metal tolerance in hyperaccumulators. Environ Challenges 4:100197

    CAS  Google Scholar 

  • Patel J, Zhang Q, McKay RML, Vincent R, Xu Z (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160(1):232–243

    CAS  PubMed  Google Scholar 

  • Pathak P, Bhattacharya D (2021) Phytoextraction of heavy metals by weeds: physiological and molecular intervention. Handbook of bioremediation. Academic Press, Cambridge, pp 49–59

    Google Scholar 

  • Paul S, Dukare AS, Manjunatha BS, Annapurna K (2017) Plant growth-promoting rhizobacteria for abiotic stress alleviation in crops. Advances in soil microbiology: recent trends and future prospects. Springer, Singapore, pp 57–79

    Google Scholar 

  • Rabani MS, Hameed I, Mir TA, Gupta MK, Habib A, Jan M, Hussain H, Tripathi S, Pathak A, Ahad MB, Gupta C (2022) Microbial-assisted phytoremediation. phytoremediation. Academic Press, Cambridge, pp 91–114

    Google Scholar 

  • Rai PK, Kim KH, Lee SS, Lee JH (2020) Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci Totl Environ 705:135858

    CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    CAS  PubMed  Google Scholar 

  • Ramírez V, Baez A, López P, Bustillos MDR, Villalobos MA, Carreño R, Munive JA (2019) Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by mesquite trees (Prosopis laevigata). Front Microbiol 10:1833

    PubMed  PubMed Central  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    CAS  PubMed  Google Scholar 

  • Ratna S, Rastogi S, Kumar R (2021) Phytoremediation: a synergistic interaction between plants and microbes for removal of unwanted chemicals/contaminants. Microbes and signaling biomolecules against plant stress. Springer, Singapore, pp 199–222

    Google Scholar 

  • Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galovic V, Wachter A (2007) Novel insight into the regulation of GSH biosynthesis in higher plants. Plant Biol 9(05):565–572

    CAS  PubMed  Google Scholar 

  • Ribeiro AT, de Oliveira VP, Junior UDOB, da Silva BRS, Batista BL, da Silva Lobato AK (2020) 24-Epibrassinolide mitigates nickel toxicity in young Eucalyptus urophylla ST Blake plants: nutritional, physiological, biochemical, anatomical and morphological responses. Ann for Sci 77(1):1–19

    Google Scholar 

  • Rono JK, Le Wang L, Wu XC, Cao HW, Zhao YN, Khan IU, Yang ZM (2021) Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. Chemosphere 265:129136

    CAS  PubMed  Google Scholar 

  • Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7(5):207–212

    CAS  PubMed  Google Scholar 

  • Roth-Nebelsick A (2007) Computer-based studies of diffusion through stomata of different architecture. Ann Bot 100(1):23–32

    PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2015) Phytoremediation: mechanisms and adaptations. Soil Remed Plants Prospects Challenges 85:85–105

    Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 223(5):3984–3999

    Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    CAS  PubMed  Google Scholar 

  • Saxena G, Kishor R, Saratale GD, Bharagava RN (2020) Genetically Modified Organisms (GMOs) and their potential in environmental management: constraints, prospects, and challenges. Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 1–19

    Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109(7):789–794

    CAS  PubMed  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30(3):177–184

    CAS  PubMed  Google Scholar 

  • Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Dumat C (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Total Environ 427:253–262

    PubMed  Google Scholar 

  • Schreiber L, Schonherr J (2009) Water and solute permeability of plant cuticles. Springer, Berlin

    Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544

    CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78(1):32–62

    Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    CAS  PubMed  Google Scholar 

  • Shahid M, Khalid S, Bibi I, Bundschuh J, Niazi NK, Dumat C (2020) A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ 711:134749

    PubMed  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM, Yun BW, Lee IJ (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    CAS  PubMed  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Vig AP (2016) Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: an overview. Plant metal interaction. Elsevier, Amsterdam, pp 263–283

    Google Scholar 

  • Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Yan D (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 9(1):100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Chaturvedi P, Chandra R, Kumar S (2022a) Identification of heavy metals tolerant Brevundimonas sp. from rhizospheric zone of Saccharum munja L. and their efficacy in in-situ phytoremediation. Chemosphere 295:133823

    CAS  PubMed  Google Scholar 

  • Sharma R, Kumar R, Hajam YA, Rani R (2022b) Role of biotechnology in phytoremediation. Phytoremediation. Academic Press, Cambridge, pp 437–454

    Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155(12):17–22

    CAS  PubMed  Google Scholar 

  • Shim D, Kim S, Choi YI, Song WY, Park J, Youk ES, Jeong SC, Martinoia E, Noh EW, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90(4):1478–1486

    CAS  PubMed  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1–2):1–9

    CAS  PubMed  Google Scholar 

  • Singh G, Bhadange S, Bhawna F, Shewale P, Dahiya R, Aggarwal A, Manju F, Arya SK (2022) Phytoremediation of radioactive elements, possibilities and challenges: special focus on agricultural aspects. Int J Phytoremediat 2022:1–8. https://doi.org/10.1080/15226514.2022.2043239

    Article  Google Scholar 

  • Sone Y, Nakamura R, Pan-Hou H, Sato MH, Itoh T, Kiyono M (2013) Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE. AMB Express 3(1):1–8

    Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99(3):279–293

    CAS  PubMed  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69(3):1791–1796

    PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64(1):303–315

    CAS  PubMed  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subhashini V, Swamy AVVS (2013) Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univ J Environ Res Technol 3(4):2319

    Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35(4):985–999

    CAS  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    CAS  PubMed  Google Scholar 

  • Terwayet-Bayouli I, Robledo-Mahón T, Meers E, Calvo C, Aranda E (2022) Assessment of the antioxidative response and culturable micro-organisms of Lygeum spartum Loefl. ex L. for prospective phytoremediation applications. Int J Phytoremediat 2022:1–12. https://doi.org/10.1080/15226514.2022.2077694

    Article  CAS  Google Scholar 

  • Thakur S, Choudhary S, Majeed A, Singh A, Bhardwaj P (2019) Insights into the molecular mechanism of arsenic phytoremediation. J Plant Growth Regul 39:1–12

    Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Pandey A (2008) Plant growth promotion abilities and formulation of Bacillus megaterium strain B 388 (MTCC6521) isolated from a temperate Himalayan location. Indian J Microbiol 48(3):342–347

    PubMed  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    CAS  Google Scholar 

  • Ullah I, Mateen A, Ahmad MA, Munir I, Iqbal A, Alghamdi KM, Al-Solami HM, Siddiqui MF (2022) Heavy metal ATPase genes (HMAs) expression induced by endophytic bacteria, “AI001, and AI002” mediate cadmium translocation and phytoremediation. Environ Pollut 293:118508

    CAS  PubMed  Google Scholar 

  • Van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42(19):7405–7410

    PubMed  Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Angela GA, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clément C (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32(2):178–193

    CAS  PubMed  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21(3):218–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verkleij JA, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguébel JP, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67(1):10–22

    CAS  Google Scholar 

  • Vershinina ZR, Maslennikova DR, Chubukova OV, Khakimova LR, Fedyaev VV (2022) Contribution of artificially synthetized phytochelatin encoded by the gene PPH6HIS to increase the phytoremediative qualities of tobacco plants. Russ J Plant Physiol 69(4):1–9

    Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sánchez-Contreras M, Lloret J, de Cárcer DA, Oruezábal RI, Bolanos L, Macek T, Karlson U (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71(5):2687–2694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visioli G, D’Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM (2014) Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117:538–544

    CAS  PubMed  Google Scholar 

  • Vocciante M, Grifoni M, Fusini D, Petruzzelli G, Franchi E (2022) The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Appl Sci 12(3):1231

    CAS  Google Scholar 

  • Vongdala N, Tran HD, Xuan TD, Teschke R, Khanh TD (2019) Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int J Environ Res Public Health 16(1):22

    CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Gen 10(1):57–63

    CAS  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111(5):1065–1074

    CAS  PubMed  Google Scholar 

  • Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600

    CAS  PubMed  Google Scholar 

  • Wang Q, Ma L, Zhou Q, Chen B, Zhang X, Wu Y, Feng Y (2019) Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 234:769–776

    CAS  PubMed  Google Scholar 

  • Ward NI (1990) Lead contamination of the London orbital (M25) motorway (since its opening in 1986). Sci Totl Environ 93:277–283

    CAS  Google Scholar 

  • Wei Y, Hou H, ShangGuan Y, Li J, Li F (2014) Genetic diversity of endophytic bacteria of the manganese-hyperaccumulating plant Phytolacca americana growing at a manganese mine. Eur J Soil Biol 62:15–21

    CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780

    CAS  PubMed  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ML, Cheng H, Zhao H, Sun FL, Wang YT, Yin JP, Wang YS (2020) Distribution patterns and source identification for heavy metals in Mirs Bay of Hong Kong in China. Ecotoxicol (lond, Engl) 29:767–770

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Schol Res Notices 2011:402647

    Google Scholar 

  • Xia F, Qu L, Wang T, Luo L, Chen H, Dahlgren RA, Huang H (2018) Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 207:218–228

    CAS  PubMed  Google Scholar 

  • Xie Y, Bu H, Feng Q, Wassie M, Amee M, Jiang Y, Bi Y, Hu L, Chen L (2021) Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Environ Res 200:111730

    CAS  PubMed  Google Scholar 

  • Xiong TT, Leveque T, Austruy A, Goix S, Schreck E, Dappe V, Dumat C (2014) Foliar uptake and metal (loid) bioaccessibility in vegetables exposed to particulate matter. Environ Geochem Health 36(5):897–909

    CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    PubMed  PubMed Central  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediat 14(1):89–99

    Google Scholar 

  • Yang Y, Liu Y, Li Z, Wang Z, Li C, Wei H (2020) Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. Int J Environ Sci Technol 17(4):2477–2484

    CAS  Google Scholar 

  • Yang L, Wang J, Yang Y, Li S, Wang T, Oleksak P, Chrienova Z, Wu Q, Nepovimova E, Zhang X, Kuca K (2022) Phytoremediation of heavy metal pollution: Hotspots and future prospects. Ecotoxicol Environ Saf 234:113403

    CAS  PubMed  Google Scholar 

  • Yanitch A, Brereton NJ, Gonzalez E, Labrecque M, Joly S, Pitre FE (2017) Transcriptomic response of purple willow (Salix purpurea) to arsenic stress. Front Plant Sci 8:1115

    PubMed  PubMed Central  Google Scholar 

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580(4):1183–1191

    CAS  PubMed  Google Scholar 

  • Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T (2014) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT 2440 expressing the phytochelatin synthase gene of S. chizosaccharomyces pombe. Lett Appl Microbiol 58(3):255–261

    CAS  PubMed  Google Scholar 

  • Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195(1):97–112

    CAS  PubMed  Google Scholar 

  • Zahari NZ, Tuah PM, Rahim SA (2021) Inoculation of Bacillus cereus enhance phytoremediation efficiency of Pistia stratiotes and Eichhornia crassipes in removing heavy metal Pb. IOP Conf Ser 847(1):012012

    Google Scholar 

  • Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L (2018) Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediat 20(4):311–320

    CAS  Google Scholar 

  • Zeng Q, Ding X, Wang J, Han X, Iqbal H, Bilal M (2022) Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 29:1–18

    Google Scholar 

  • Zgorelec Z, Bilandzija N, Knez K, Galic M, Zuzul S (2020) Cadmium and Mercury phytostabilization from soil using Miscanthus× giganteus. Sci Rep 10(1):1–10

    Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56(2):264–273

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 260:1100–1107

    CAS  PubMed  Google Scholar 

  • Zhao L, Meng B, Feng X (2020) Mercury methylation in rice paddy and accumulation in rice plant: a review. Ecotoxicol Environ Saf 195:110462

    CAS  PubMed  Google Scholar 

  • Zhuang P, Lu H, Li Z, Zou B, McBride MB (2014) Multiple exposure and effects assessment of heavy metals in the population near mining area in South China. PLoS ONE 9(4):e94484

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KK, SK, RK, NH, PB and PS performed conceptualization, analysis and interpretation, writing original draft, and designing the figures. PO provided the critical feedback and shaped the manuscript. RB critically revised the manuscript.

Corresponding authors

Correspondence to Kanika Khanna or Renu Bhardwaj.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Handling Editor: Sudhir K. Sopory.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, K., Kohli, S.K., Kaur, R. et al. Reconnoitering the Efficacy of Plant Growth Promoting Rhizobacteria in Expediting Phytoremediation Potential of Heavy Metals. J Plant Growth Regul 42, 6474–6502 (2023). https://doi.org/10.1007/s00344-022-10879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10879-9

Keywords

Navigation