Skip to main content

Advertisement

Log in

Phytohormones Mediated Modulation of Abiotic Stress Tolerance and Potential Crosstalk in Horticultural Crops

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The current status of changing climate has become a significant threat to the global production of horticultural crops. Phytohormones play a crucial role in providing a sophisticated mechanism to circumvent stress at different morphological, physiological, biochemical, and molecular levels. Phytohormone mediates the abiotic stress-responsive signalling pathway and modulates other cell wall repair mechanisms, pH regulations, root hair formation, ionic homeostasis, chlorophyll content, synthesis, and leaf morphology. Auxin, cytokinin, ethylene, strigolactones, brassinosteroid, salicylic acid, abscisic acid, jasmonic acid, and other phytohormones have also had other phytohormones recently been discovered to play a vital role in the production of abiotic stress-tolerant crops. Moreover, recently discovered phytohormone-like plant growth regulators such as polyamines, sugars, neurotransmitters, and strigolactones are an effective strategy to mitigate biotic and abiotic stress. Recent studies revealed the role of different phytohormone-like plant growth regulators and network signalling pathway that targets transcription factors and stress-related genes. Understanding the complex phytohormonal crosstalk in horticultural crops under various abiotic stress conditions will advance the knowledge about the synergistic/antagonistic role of developing stress-tolerant cultivars. Review on modulation of plant growth and development process by regulation of gene expression mediated by different phytohormones in horticultural crops is elusive. In this context, our review focusses on the role of phytohormone-like plant growth regulators and associated crosstalk among each other in plant growth and development under abiotic stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Abouelsaad I, Renault S (2018) Enhanced oxidative stress in the jasmonic acid-defcient tomato mutant def-1 exposed to NaCl stress. J Plant Physiol 226:136–144

    CAS  PubMed  Google Scholar 

  • Adão R, Glória M (2005) Bioactive amines and carbohydrate changes during ripening of ‘Prata’ banana (Musa acuminata × M. balbisiana). Food Chem 90:705–711

    Google Scholar 

  • Afreen F, Zobayed SM, Kozai T (2006) Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 41:108–115

    CAS  PubMed  Google Scholar 

  • Afzal I, Munir F, Ayub CM, Basra SMA, Hameed A, Nawaz A (2009) Changes in antioxidant enzymes, germination capacity and vigour of tomato seeds in response of priming with polyamines. Seed Sci Technol 37:765–770

    Google Scholar 

  • Afzal S, Chaudhary N, Singh NK (2021) Role of soluble sugars in metabolism and sensing under abiotic stress. Plant growth regulators. Springer, Cham, pp 305–334

    Google Scholar 

  • Ahammed GJ, Wang Y, Mao Q, Wu M, Yan Y, Ren J, Wang X, Liu A, Chen S (2020) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut 259:113957

    CAS  PubMed  Google Scholar 

  • Ahanger MA, Mir RA, Alyemeni MN, Ahmad P (2020) Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol Biochem 147:31–42

    CAS  PubMed  Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Azooz MM, Sharma S (2012) Polyamines: role in plants under abiotic stress. Crop production for agricultureal improvement. Springer, Dordrecht, pp 491–512

    Google Scholar 

  • Ahmad B, Jaleel H, Sadiq Y, Khan MMA, Shabbir A (2018) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul 86:273–286

    CAS  Google Scholar 

  • Alhaithloul HAS, Soliman MH (2021) Methyl jasmonate and brassinosteroids: emerging plant growth regulators in plant abiotic stress tolerance and environmental changes. Plant growth regulators: signalling under stress conditions. Springer, Cham, p 173

    Google Scholar 

  • Alhaithloul HAS, Abu-Elsaoud AM, Soliman MH (2020) Abiotic stress tolerance in crop plants: role of phytohormones. Abiotic stress in plants. Intech Open, London

    Google Scholar 

  • Alisof S, Einali A, Sangtarash MH (2020) Jasmonic acid-induced metabolic responses in bitter melon (Momordica charantia) seedlings under salt stress. J Hortic Sci Biotechnol 95:247–259

    Google Scholar 

  • AlTaey DKA (2017) Alleviation of salinity effects by poultry manure and gibberellin application on growth and peroxidase activity in pepper. Int J Environ Agri Biotech 2:238861

    Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Qadir A (2020) Exogenous melatonin enhances salt stress tolerance in tomato seedlings. Biol Plantar 64:604–615

    CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Altaf MM, Jahan MS, Khan LU (2021a) Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J Soil Sci Plant Nutr 21(3):1842–1855

    CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Altaf MM, Khan LU, Shahid S (2021b) Melatonin alleviates salt damage in tomato seedling: a root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci Hortic 285:110145

    CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Khan LU, Altaf MM, Jahan MS, Nawaz MA, Naz S, Shahid S, Lal MK (2021c) Protective mechanisms of melatonin against vanadium phytotoxicity in tomato seedlings: insights into nutritional status, photosynthesis, root architecture system, and antioxidant machinery. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10513-0

    Article  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S (2021d) Phytomelatonin: an overview of the importance and mediating functions of melatonin against environmental stresses. Physiol Plantar 172:820–846

    CAS  Google Scholar 

  • Altaf MA, Shu H, Hao Y, Zhou Y, Mumtaz MA, Wang Z (2021e) Vanadium toxicity induced changes in growth, antioxidant profiling, and vanadium uptake in pepper (Capsicum annum L.) seedlings. Horticulturae 8(1):28

    Google Scholar 

  • Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P (2022a) Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiol Biochem 185:188–197

    CAS  PubMed  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, Lal MK, Tiwari RK, Shakoor A (2022b) Melatonin mitigates cadmium toxicity by promoting root architecture and mineral homeostasis of tomato genotypes. J Soil Sci Plant Nutr 22(1):1112–1128

    CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, Tiwari RK, Lal MK, Shahid MA, Kumar R, Nawaz MA (2022c) Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11:309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amjad M, Akhtar J, Anwar-ul-Haq M, Yang A, Akhtar SS, Jacobsen SE (2014) Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci Hortic 172:109–116

    CAS  Google Scholar 

  • Anwar R, Mattoo AK, Handa AK (2015) Polyamine interactions with plant hormones: crosstalk at several levels. Int J Hydrogen Energy 38:1039–1051

    Google Scholar 

  • Araz O, Yildirim E, Ekinci M (2021) Alleviation of the germination inhibitory effect of salt stress in pepper (Capsicum annuum L.) seeds by serotonin. J Agric Product 2:48–54

    Google Scholar 

  • Azooz MM, Metwally A, Abou-Elhamd MF (2015) Jasmonate-induced tolerance of Hassawi okra seedlings to salinity in brackish water. Acta Physiol Plantar 37:77

    Google Scholar 

  • Bali S, Kaur P, Kohli SK, Ohri P, Thukral AK, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Sci Total Environ 645:1344–1360

    CAS  PubMed  Google Scholar 

  • Bali S, Jamwal VL, Kaur P, Kohli SK, Ohri P, Gandhi SG, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ahmad P (2019) Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against Lead (Pb) toxicity in tomato. Ecotoxicol Environ Saf 174:283–294

    CAS  PubMed  Google Scholar 

  • Ben Massoud M, Karmous I, El Ferjani E, Chaoui A (2018) Alleviation of copper toxicity in germinating pea seeds by IAA, GA3, Ca and citric acid. J Plant Interact 13:21–29

    CAS  Google Scholar 

  • Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan Smith R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    CAS  PubMed  Google Scholar 

  • Bhandari S, Nailwal TK (2020) Role of brassinosteroids in mitigating abiotic stresses in plants. Biologia 75(12):2203–2230

    Google Scholar 

  • Bhoi A, Yadu B, Chandra J, Keshavkant S (2021) Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta 254:1–21

    Google Scholar 

  • Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528

    PubMed Central  PubMed  Google Scholar 

  • Boriboonkaset T, Theerawitaya C, Pichakum A, Cha-um S, Takabe T, Kirdmanee C (2012) Expression levels of some starch metabolism related genes in flag leaf of two contrasting rice genotypes exposed to salt stress. Aust J Crop Sci 6:1579–1586

    CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochem 28:1589–1595

    CAS  Google Scholar 

  • Bortolin GS, Teixeira SB, de Mesquita PR, Ávila GE, Carlos FS, da Silva Pedroso CE, Deuner S (2020) Seed priming with salicylic acid minimizes oxidative effects of aluminum on Trifolium seedlings. J Soil Sci Plant Nutr 20:2502–2511

    CAS  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni AA, Bouzayen M, Zouine M (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 13:e0193517

    PubMed Central  PubMed  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306

    CAS  Google Scholar 

  • Byeon Y, Lee HY, Hwang OJ, Lee H-J, Lee K, Back K (2015) Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J Pineal Res 58:470e8

    Google Scholar 

  • Caarls L, Pieterse CM, Van Wees S (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170

    PubMed Central  PubMed  Google Scholar 

  • Cao SF, Zheng YH, Wang KT, Jin P, Rui HJ (2009) Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem 115:1458–1463

    CAS  Google Scholar 

  • Carillo P (2018) GABA shunt in durum wheat. Front Plant Sci 9:100

    PubMed Central  PubMed  Google Scholar 

  • Chakma R, Biswas A, Saekong P, Ullah H, Datta A (2021) Foliar application and seed priming of salicylic acid affect growth, fruit yield, and quality of grape tomato under drought stress. Sci Hortic 280:109904

    CAS  Google Scholar 

  • Chen S, Zimei L, Cui J, Jiangang D, Xia X, Liu D, Yu J (2011) Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regul 65:101–108

    CAS  Google Scholar 

  • Chen HJ, Huang CS, Huang GJ, Chow TJ, Lin YH (2013) NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). J Plant Physiol 170:1471–1483

    CAS  PubMed  Google Scholar 

  • Chen H, Liu T, Xiang L, Hu L, Hu X (2018) GABA enhances muskmelon chloroplast antioxidants to defense salinity-alkalinity stress. Russ J Plant Physiol 654:674–679

    Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01945

    Article  PubMed Central  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhary KK, Agrawal SB (2014) Ultraviolet-B induced changes in morphological, physiological, and biochemical parameters of two cultivars of pea (Pisum sativum L.). Ecotox Environ Safe 100:178–187

    CAS  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Kanwar M, Biondi S (2011) Enhancing effects of 24-epibrassinolide and putrescine on the antioxidant capacity and free radical scavenging activity of Raphanus sativus seedlings under Cu ion stress. Acta Physiol Plantar 33:1319–1333

    CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    CAS  PubMed  Google Scholar 

  • Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, Beveridge CA, Foyer CH (2018) Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ 41:1298–1310

    CAS  PubMed  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    CAS  Google Scholar 

  • Cortleven A, Ehret S, Schmülling T, Johansson H (2019) Ethylene-independent promotion of photo morphogenesis in the dark by cytokinin requires COP1 and the CDD complex. J Exp Bot 70:165–178

    CAS  PubMed  Google Scholar 

  • Crizel RL, Perin EC, Siebeneichler TJ, Borowski JM, Messias RS, Rombaldi CV, Galli V (2020) Abscisic acid and stress induced by salt: effect on the phenylpropanoid, l-ascorbic acid and abscisic acid metabolism of strawberry fruits. Plant Physiol Biochem 152:211–220

    CAS  PubMed  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    CAS  Google Scholar 

  • Dawuda MM, Liao W, Hu L, Yu J, Xie J, Calderón-Urrea A, Wu Y, Tang Z (2020) Foliar application of abscisic acid mitigates cadmium stress and increases food safety of cadmium-sensitive lettuce (Lactuca sativa L.) genotype. Peer J 8:e9270

    PubMed Central  PubMed  Google Scholar 

  • Dayan J, Schwarzkopf M, Avni A, Aloni R (2010) Enhancing plant growth and fiber production by silencing GA 2-oxidase. Plant Biotechnol J 8:425–435

    CAS  PubMed  Google Scholar 

  • Debnath B, Hussain M, Irshad M, Mitra S, Li M, Liu S, Qiu D (2018) Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules 23(2):388

    PubMed Central  PubMed  Google Scholar 

  • Debnath B, Li M, Liu S, Pan T, Ma C, Qiu D (2020) Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato. Ecotoxicol Environ Saf 200:110720

    CAS  PubMed  Google Scholar 

  • Demir I, Ellialtioglu S, Tipirdamaz R (1994) The effect of different priming treatments on reparability of aged eggplant seeds. Acta Hortic 362:205–212

    Google Scholar 

  • Devi R, Behera B, Raza MB, Mangal V, Altaf MA, Kumar R, Kumar A, Tiwari RK, Lal MK, Singh B (2021) An insight into microbes mediated heavy metal detoxification in plants: a review. J Soil Sci Plant Nutr 22:914–936

    Google Scholar 

  • Diao Q, Song Y, Qi H (2015) Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels. Acta Physiol Plantar 37:1–15

    CAS  Google Scholar 

  • Ding CK, Wang C, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901

    CAS  PubMed  Google Scholar 

  • Ding Y, Sheng J, Li S, Nie Y, Zhao J, Zhu Z, Wang Z, Tang X (2015) The role of gibberellins in the mitigation of chilling injury in cherry tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 101:88–95

    CAS  Google Scholar 

  • Djennane S, Hibrand-Saint Oyant L, Kawamura K, Lalanne D, Laffaire M, Thouroude T, Chalain S, Sakr S, Boumaza R, Foucher F (2014) Impacts of light and temperature on shoot branching gradient and expression of strigolactone synthesis and signalling genes in rose. Plant Cell Environ 37:742–757

    CAS  PubMed  Google Scholar 

  • Du P, Yin B, Cao Y, Han R, Ji J, He X, Liang B, Xu J (2021) Beneficial effects of exogenous melatonin and dopamine on low nitrate stress in Malus hupehensis. Front Plant Sci. https://doi.org/10.3389/fpls.2021.807472

    Article  PubMed Central  PubMed  Google Scholar 

  • Dunlop JR, Binzel ML (1996) NaCl reduces indole acetic acid levels in the roots of tomato plants independent of stress induced abscisic acid. Plant Physiol 112:379–384

    Google Scholar 

  • Elstner EF, Konze JRR, Selman BR, Stofer C (1976) Ethylene formation in sugar beet leaves. Plant Physiol 58:163–216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plantar 127:57–65

    CAS  Google Scholar 

  • Erland LAE, Saxena PK (2017) Beyond a neurotransmitter: the role of serotonin in plants. Neurotransmitter 4:1–12

    Google Scholar 

  • Erland LA, Turi CE, Saxena PK (2019) Serotonin in plants: origin, functions, and implications. Serotonin. Elsevier, Amsterdam, pp 23–46

    Google Scholar 

  • Estrada-Melo AC, Reid MS, Jiang CZ (2015) Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Hortic Res 2:1–9

    CAS  Google Scholar 

  • Faghih S, Ghobadi C, Zarei A (2017) Response of strawberry plant cv. ‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. J Plant Growth Regul 36:651–659

    CAS  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015) Crop plant hormones and environmental stress. Sustain Agri Rev. https://doi.org/10.1007/978-3-319-09132-7_10

    Article  Google Scholar 

  • Feller U, Vaseva II (2014) Extreme climate events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front Environ Sci 39:1–17

    Google Scholar 

  • Feng Y, Chen X, He Y, Kou X, Xue Z (2019) Effects of exogenous trehalose on the metabolism of sugar and abscisic acid in tomato seedlings under salt stress. Trans Tianjin Uni 25:451–471

    CAS  Google Scholar 

  • Gangwar S, Singh VP, Srivastava PK, Maurya JN (2011) Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiol Plant 33:1385–1397

    CAS  Google Scholar 

  • Ge YX, Zhang LJ, Li FH, Chen ZB, Wang C, Yao YC, Han ZH, Zhang J, Shi ZS (2010) Relationship between jasmonic acid accumulation and senescence in drought-stress. Afr J Agric Res 5:1978–1983

    Google Scholar 

  • Geng Q-W, Xing H, Hao G-M, Sun Y-J, Zhai H, Yuan-peng Du (2016) Effect of exogenous melatonin on photosynthesis of ‘cabernet sauvigon’ grape leaves under ozone stress. Acta Hortic Sinica 43:1463

    Google Scholar 

  • Ghafari H, Tadayon MR, Nadeem M, Razmjoo J, Cheema M (2020) Foliage applications of jasmonic acid modulate the antioxidant defense under water defcit growth in sugar beet. Span J Agric Res 17:0805

    Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin in Plant Biol 8:93–102

    CAS  Google Scholar 

  • Gilani M, Danish S, Ahmed N, Rahi AA, Akrem A, Younis U, Irshad I, Iqbal RK (2020) Mitigation of drought stress in spinach using individual and combined applications of salicylic acid and potassium. Pak J Bot 52:1505–1513

    CAS  Google Scholar 

  • Groen SC, Whiteman NK (2014) The evolution of ethylene signaling in plant chemical ecology. J Chem Ecol 40:700–716

    CAS  PubMed  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34(1):35–45

    CAS  PubMed  Google Scholar 

  • Guo WL, Chen RG, Gong ZH, Yin YX, Ahmed SS, He YM (2012) Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genet Mol Res 11:4063–4080

    CAS  PubMed  Google Scholar 

  • Habib S, Waseem M, Li N, Yang L, Li Z (2019) Overexpression of SlGRAS7 affects multiple behaviors leading to confer abiotic stresses tolerance and impacts gibberellin and auxin signaling in tomato. Int J Genom 2019:1–16

    Google Scholar 

  • Hammond J, Broadley M, Bowen H, Spracklen W, Hayden R, White P (2011) Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS ONE 6(9):e24606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han SE, Park SR, Kwon HB et al (2005) Genetic engineering of drought-resistant tobacco plants by introducing the trehalose phosphorylase (TP) gene from Pleurotus sajor-caju. Plant Cell Tissue Organ Cult 82:151–158

    CAS  Google Scholar 

  • Harvais G, Hardley G (1967) The development of orchis purpurella in asymbiotic and inoculated cultures. New Phytol 66:217–230

    Google Scholar 

  • Hassan FAS, Ali EF, Alamer KH (2018) Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. South Afri J Bot 116:96–102

    CAS  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Bio Sci 19:325–335

    CAS  Google Scholar 

  • He R, Zhuang Y, Cai Y, Agüero CB, Liu S, Wu J, Deng S, Walker MA, Lu J, Zhang Y (2018) Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front Plant Sci 9:970

    PubMed Central  PubMed  Google Scholar 

  • Hernandez-García J, Briones-Moreno A, Blazquez MA (2021) Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in cell & developmental biology. Academic Press, Cambridge, pp 46–54

    Google Scholar 

  • Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, Zhang H, Zhao J (2012a) Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiol Biochem 57:200–209

    CAS  PubMed  Google Scholar 

  • Hu M, Shi Z, Zhang Z, Zhang Y, Li H (2012b) Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul 68:177–188

    CAS  Google Scholar 

  • Hu WH, Yan XH, Xiao YA, Zeng JJ, Qi HJ, Ogweno JO (2013) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic 150:232–237

    CAS  Google Scholar 

  • Hu X, Xu Z, Xu W, Li J, Zhao N, Zhou Y (2015) Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca (NO3)2 stress. Plant Physiol Biochem 92:1–10

    CAS  PubMed  Google Scholar 

  • Hu Y, Xia S, Su Y, Wang H, Luo W, Su S, Xiao L (2016) Brassinolide increases potato root growth in vitro in a dose-dependent way and alleviates salinity stress. Bio Med Res Int 2016:1–11

    Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    CAS  PubMed  Google Scholar 

  • Jahan MS, Wang Y, Shu S, Zhong M, Chen Z, Wu J, Sun J, Guo S (2019) Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci Hortic 247:421–429

    Google Scholar 

  • Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y (2020) Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf 197:110593

    CAS  PubMed  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Hasan M, El-Yazied AA, Alabdallah NM (2021) Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA- and GA-mediated pathways. Front Plant Sci 12:381

    Google Scholar 

  • Jakubowska D, Janicka M (2017) The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress. Plant Sci 264:37–47

    CAS  PubMed  Google Scholar 

  • Jalil SU, Khan MIR, Ansari MI (2019) Role of GABA transaminase in the regulation of development and senescence in Arabidopsis thaliana. Curr Plant Bio 19:100119

    Google Scholar 

  • Jangid KK, Dwivedi P (2017) Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum mill.) under drought stress. Acta Physiol Plant 39:73

    Google Scholar 

  • Javed T, Ali MM, Shabbir R, Anwar R, Afzal I, Mauro RP (2021) Alleviation of copper-induced stress in pea (Pisum sativum L.) through foliar application of gibberellic acid. Biology 10:120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayasinghe T, Perera P, Wimalasekera R (2019) December. Effect of foliar application of gibberellin in mitigating salt stress in tomato (Solanum Lycopersicum), ‘Thilina’ Variety. In: Proceedings of the 6th international conference on multidisciplinary approaches (iCMA). Elsevier, Amsterdam

  • Jia H, Wang X, Wei T, Wang M, Liu X, Hua L, Ren X, Guo J, Li J (2021) Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. Ecotoxicol Environ Saf 207:111550

    CAS  PubMed  Google Scholar 

  • Jiang K, Asami T (2018) Chemical regulators of plant hormones and their applications in basic research and agriculture. Biosci Biotechnol Biochem 82:1265–1300

    CAS  PubMed  Google Scholar 

  • Jiang X, Zhang C, Lü P, Jiang G, Liu X, Dai F (2014) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnol J 12:38–48

    CAS  PubMed  Google Scholar 

  • Jiao X, Li Y, Zhang X, Liu C, Liang W, Li C, Li C (2019) Exogenous dopamine application promotes alkali tolerance of apple seedlings. Plants 8:580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiao C, Lan G, Sun Y, Wang G, Sun Y (2021) Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. J Plant Growth Regul 40:277–292

    CAS  Google Scholar 

  • Jin P, Duan Y, Wang L, Wang J, Zheng Y (2014) Reducing chilling injury of loquat fruit by combined treatment with hot air and methyl jasmonate. Food Bio Technol 7:2259–2266

    CAS  Google Scholar 

  • Jogawat A, Yadav B, Chhaya Lakra N, Singh AK, Narayan OP (2021) Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plantar 172:1106–1132

    CAS  Google Scholar 

  • Jyoti S, Das Azim J, Bin Robin AHK (2021) Genome-wide characterization and expression profiling of EIN3/EIL family genes in Zea Mays. Plant Gene 25:100270

    CAS  Google Scholar 

  • Ka MK, Sritharan N, Marimuthu S, Senthil A (2020) Auxin and salicylic acid nanoformulations for mitigating drought stress in tomato (Lycopersicon esculentum L.). Madras Agri J 107:1

    Google Scholar 

  • Kamran M, Danish M, Saleem MH, Malik Z, Parveen A, Abbasi GH, Jamil M, Ali S, Afzal S, Riaz M, Rizwan M, Ali M, Zhou Y (2021) Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere 263:128169

    CAS  PubMed  Google Scholar 

  • Kandil A, Sharief AE, Abido WAE, Awed AM (2014) Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Soc Sugar Res Prom Sugar Tech 16:211–221

    CAS  Google Scholar 

  • Kang GZ, Wang CH, Sun GC, Wang ZX (2003a) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    CAS  Google Scholar 

  • Kang GZ, Wang CH, Sun GC, Wang ZX (2003b) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    CAS  Google Scholar 

  • Kang C, He S, Zhai H, Li R, Zhao N, Liu Q (2018) A sweet potato auxin response factor gene (ibarf5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01307

    Article  PubMed Central  PubMed  Google Scholar 

  • Kapoor D, Rattan A, Gautam V, Kapoor N, Bhardwaj R (2014) 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. J Stress Physiol Biochem 10(3):110–121

    Google Scholar 

  • Kapulnik Y, Koltai H (2014) Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiol 166:560–569

    PubMed Central  PubMed  Google Scholar 

  • Karimi R, Ershadi A (2015) Role of exogenous abscisic acid in adapting of ‘Sultana’ grapevine to low-temperature stress. Acta Physiol Plant 37:151

    Google Scholar 

  • Karimi R, Ebrahimi M, Amerian M (2021) Abscisic acid mitigates NaCl toxicity in grapevine by influencing phytochemical compounds and mineral nutrients in leaves. Sci Hortic 288:110336

    CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2009) Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci Agri 66:180–187

    CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M (2011) Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Sci Hortic 130:133–140

    CAS  Google Scholar 

  • Kaya C (2021) Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiol Plantar 172:351–370

    CAS  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Annals Bot 112:1655–1665

    Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    CAS  PubMed  Google Scholar 

  • Keshishian EA, Hallmark HT, Ramaraj T, Plačková L, Sundararajan A, Schilkey F, Novák O, Rashotte AM (2018) Salt and oxidative stresses uniquely regulate tomato cytokinin levels and transcriptomic response. Plant Direct 2:e00071

    PubMed Central  PubMed  Google Scholar 

  • Keunen ELS, Peshev D, Vangronsveld J et al (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36(7):1242–1255

    CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed Central  PubMed  Google Scholar 

  • Khan MIR, Trivellini A, Chhillar H, Chopra P, Ferrante A, Khan NA, Ismail AM (2020a) The significance and functions of ethylene in flooding stress tolerance in plants. Environ Exp Bot 179:104188

    CAS  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020b) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    CAS  Google Scholar 

  • Khan MIR, Jalil SU, Chopra P, Chhillar H, Ferrante A, Khan NA, Ansari MI (2021) Role of GABA in plant growth, development and senescence. Plant Gene 26:100283

    CAS  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF. B. 3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Scient World J. 2014:1–12

    Google Scholar 

  • Korkmaz A, Değer Ö, Szafrańska K, Köklü Ş, Karaca A, Yakupoğlu G, Kocaçinar F (2021) Melatonin effects in enhancing chilling stress tolerance of pepper. Sci Hortic 289:110434

    CAS  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:606–618

    CAS  Google Scholar 

  • Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440

    CAS  Google Scholar 

  • Lavy M, Estelle M (2016) Mechanisms of auxin signaling. Development 143:3226–3229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim W (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Bio 55:61–81

    CAS  Google Scholar 

  • Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH (2010) The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul 60:35–42

    CAS  Google Scholar 

  • Li Z, Zhao X, Sandhu AK, Gu L (2010) Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces. J Agri Food Chem 58:6503–6509

    CAS  Google Scholar 

  • Li QZ, Li CH, Yu XC, Shi QH (2011) Gibberellin A3 pretreatment increased antioxidative capacity of cucumber radicles and hypocotyls under suboptimal temperature. Afr J Agric Res 6:4091–4098

    Google Scholar 

  • Li B, Zhang C, Cao B, Qin G, Wang W, Tian S (2012) Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids 43:2469–2480

    CAS  PubMed  Google Scholar 

  • Li H, Liu SS, Yi CY, Wang F, Zhou J, Xia XJ, Shi K, Zhou YH, Yu JQ (2014) Hydrogen peroxide mediates abscisic acid-induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ 37:2768–2780

    CAS  PubMed  Google Scholar 

  • Li C, Sun X, Chang C, Jia D, Wei Z, Li C, Ma F (2015) Dopamine alleviates salt-induced stress in Malus hupehensis. Physiol Plant 153:584–602

    CAS  PubMed  Google Scholar 

  • Li Y, Fan Y, Ma Y, Zhang Z, Yue H, Wang L, Li J, Jiao Y (2017) Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress. J Plant Growth Regul 36:436–449

    CAS  Google Scholar 

  • Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J (2019) Foliar application of salicylic acid alleviates the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf 172:317–325

    CAS  PubMed  Google Scholar 

  • Li ZG, Xiang RH, Wang JQ (2021) Hydrogen sulfide–phytohormone interaction in plants under physiological and stress conditions. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10350-1

    Article  Google Scholar 

  • Liang B, Li C, Ma C, Wei Z, Wang Q, Huang D, Chen Q, Li C, Ma F (2017) Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiol Biochem 119:346–359

    CAS  PubMed  Google Scholar 

  • Liang B, Ma C, Zhang Z, Wei Z, Gao T, Zhao Q (2018a) Long term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environ Exp Bot 155:650–661

    CAS  Google Scholar 

  • Liang BW, Gao TT, Zhao Q, Ma CQ, Chen Q, Wei ZW (2018b) Effects of exogenous dopamine on the uptake, transport, and resorption of apple ionome under moderate drought. Front Plant Sci 9:755

    PubMed Central  PubMed  Google Scholar 

  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019) Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Hortic 246:34–43

    CAS  Google Scholar 

  • Liang T, Shi C, Peng Y, Tan H, Xin P, Yang Y, Wang F, Li X, Chu J, Huang J, Yin Y (2020) Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. Plant Cell 32:3224–3239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Chi H, Yue M, Zhang X, Li W, Jia E (2012) The regulation of exogenous jasmonic acid on UV-B stress tolerance in wheat. J Plant Growth Regul 31:436–447

    CAS  Google Scholar 

  • Liu N, Jin Z, Wang S, Gong B, Wen D, Wang X (2015) Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Sci Hortic 181:18–25

    CAS  Google Scholar 

  • Liu J, Moore S, Chen C, Lindsey K (2017) Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: from experiments to systems modeling, and back again. Mol Plant 10:1480–1496

    CAS  PubMed  Google Scholar 

  • Liu C, Li J, Zhu P, Yu J, Hou J, Wang C, Long D, Yu M, Zhao A (2019) Mulberry EIL3 confers salt and drought tolerances and modulates ethylene biosynthetic gene expression. Peer J 2:e6391

    Google Scholar 

  • Liu Q, Gao T, Liu W, Liu Y, Zhao Y, Liu Y, Li W, Ding K, Ma F, Li C (2020) Functions of dopamine in plants: a review. Plant Signal Behav 15:1827782

    PubMed Central  PubMed  Google Scholar 

  • Liu C, Kang H, Wang Y, Yao Y, Gao Z, Du Y (2021) Melatonin relieves ozone stress in grape leaves by inhibiting ethylene biosynthesis. Front Plant Sci 12:702874

    PubMed Central  PubMed  Google Scholar 

  • Lobato AKDS, Barbosa MAM, Alsahli AA, Lima EJA, Silva BRSD (2021) Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiol Plantar 172:869–884

    CAS  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scott IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    CAS  Google Scholar 

  • Lu T, Yu H, Li Q, Chai L, Jiang W (2019) Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Front Plant Sci 10:490

    PubMed Central  PubMed  Google Scholar 

  • Lubovská Z, Dobrá J, Štorchová H, Wilhelmová N, Vanková R (2014) Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J Plant Physiol 171:1625–1633

    PubMed  Google Scholar 

  • Luo Y, Wei Y, Sun S, Wang J, Wang W, Han D, Shao H, Jia H, Fu Y (2019) Selenium modulates the level of auxin to alleviate the toxicity of cadmium in tobacco. Int J Mol Sci 20:3772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, Pascale SD (2010) Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–72

    CAS  Google Scholar 

  • Mahdavian K, Ghorbanli M, Kalantari KM (2008) Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Rus J Plant Physiol 55:560–563

    CAS  Google Scholar 

  • Mahesh K, Balaraju P, Ramakrishna B, Rao SSR (2013) Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. Am J Plant Sci 4:2305

    Google Scholar 

  • Malekzadeh P, Khara J, Heydari R (2014) Alleviating effects of exogenous gammaaminobutyric acid on tomato seedling under chilling stress. Physiol Mol Biol Plants 20:133–137

    CAS  PubMed  Google Scholar 

  • Manan A, Ayyub C, Pervez MA, Ahmad R (2016) Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pak J Agric Sci 53:35–41

    Google Scholar 

  • Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, Kumar D, Bharadwaj V, Singh B, Singh RK, Aftab T (2022) Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10591-8

    Article  Google Scholar 

  • Martel AB, Qaderi MM (2016) Does salicylic acid mitigate the adverse effects of temperature and ultraviolet-B radiation on pea (Pisum sativum) plants? Environ Exp Bot 122:39–48

    CAS  Google Scholar 

  • Mayzlish-Gati E, Lek Kala SP, Resnick N, Wininger S, Bhattacharya C, Lemcoff JH, Kapulnik Y, Koltai H (2010) Strigolactones are positive regulators of light-harvesting genes in tomato. J Exp Bot 61:3129–3136

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCabe S, Garratt C, Schepers F, Jordi M, Stoopen M, Davelaar E, van Rhijn JH, Power JB, Davey MR (2001) Effects of PSAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meng X, Han J, Wang Q, Tian S (2009) Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chem 114:1028–1035

    CAS  Google Scholar 

  • Miceli A, Moncada A, Sabatino L, Vetrano F (2019) Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy 9:382

    CAS  Google Scholar 

  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y (2019) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110

    CAS  PubMed  Google Scholar 

  • Mora-Herrera ME, Lopez-Delgado H, Castillo-Morales A, Foyer CH (2005) Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant 125:430–440

    CAS  Google Scholar 

  • Mroue S, Simeunovic A, Robert HS (2018) Auxin production as an integrator of environmental cues for developmental growth regulation. J Exp Bot 69:201–212

    CAS  PubMed  Google Scholar 

  • Mukherjee S (2018) Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol Biochem 132:33–45

    CAS  PubMed  Google Scholar 

  • Müller M (2021) Foes or friends: aba and ethylene interaction under abiotic stress. Plants 10:1–7

    Google Scholar 

  • Mumtaz MA, Hao Y, Mehmood S, Shu H, Zhou H, Jin W, Chen C, Li L, Altaf MA, Wang Z (2022) Physiological and analysis provide molecular insight into 24-epibrassinolide mediated Cr (VI)-toxicity tolerance in pepper plants. Environ Poll 306:119375

    CAS  Google Scholar 

  • Nasri N, Mahmoudi H, Baatour O, M’rah S, Kaddour R, Lachâal M (2012) Effect of exogenous gibberellic acid on germination, seedling growth and phosphatase activities in lettuce under salt stress. Afr J Biotechnol 11:11967–11971

    Google Scholar 

  • Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655

    CAS  PubMed  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    CAS  PubMed  Google Scholar 

  • Niharika Singh NB, Singh A, Khare S, Yadav V, Bano C, Yadav RK (2021) Mitigating strategies of gibberellins in various environmental cues and their crosstalk with other hormonal pathways in plants: a review. Plant Mol Biol Rep 39:34–49

    Google Scholar 

  • Nir I, Moshelion M, Weiss D (2014) The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant Cell Environ 37:113–123

    CAS  PubMed  Google Scholar 

  • O’Brien JA, Benková E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451

    PubMed Central  PubMed  Google Scholar 

  • Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. E Life 3:e03031

    PubMed Central  PubMed  Google Scholar 

  • Omoarelojie LO, Kulkarni MG, Finnie JF, Pospíšil T, Strnad M, Van Staden J (2020) Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiol Biochem 155:965–979

    CAS  PubMed  Google Scholar 

  • Ormrod DP, Beckerson DW (1986) Polyamines as antioxidant for tomato. Hort Science 21:1070–1071

    CAS  Google Scholar 

  • Ouli-Jun ZCH, Zhou-Bin LIU, Ge W, Bo-Zhi YANG, Xue-Xiao ZOU (2017) Mitigation of waterlogging-induced damages to pepper by exogenous MeJA. Pak J Bot 49:1127–1135

    CAS  Google Scholar 

  • Pan C, Zhang H, Ma Q, Fan F, Fu R, Ahammed GJ, Yu J, Shi K (2019) Role of ethylene biosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta 250:563–572

    CAS  PubMed  Google Scholar 

  • Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7:434

    PubMed Central  PubMed  Google Scholar 

  • Paul M, Dijck P (2011) How do sugars regulate plant growth? Front Plant Sci 2:70

    Google Scholar 

  • Pavlíková D, Pavlík M, Procházková D, Zemanová V, Hnilička F, Wilhelmová N (2014) Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis. J Plant Physiol 171:559–564

    PubMed  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pena-Cortes H, Taleisnik E, Machado Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    CAS  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    CAS  Google Scholar 

  • Pickles VR, Sutcliffe JF (1955) The effects of 5-hydroxytryptamine, indole-3-acetic acid, and some other substances, on pigment effusion, sodium uptake, and potassium efflux, by slices of red beetroot in vitro. Biochem Biophys Acta 17:244–251

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EA, Terry N, Sears T, Kim H, Zayed A, Hwang S, Van Dun K, Voogd E, Verwoerd TC, Krutwagen RW, Goddijn OJ (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532

    CAS  Google Scholar 

  • Podlešáková K, Ugena L, Spíchal L, Doležal K, De Diego N (2019) Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol 48:53–65

    Google Scholar 

  • Protacio CM, Dai YR, Lewis EF, Flores HE (1992) Growth-stimulation by catecholamines in plant-tissue organ-cultures. Plant Physiol 98:89–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puertolas J, Conesa MR, Ballester C, Dodd IC (2015) Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. J Exp Bot 66:2325–2334

    CAS  PubMed  Google Scholar 

  • Qin H, He L, Huang R (2019) The coordination of ethylene and other hormones in primary root development. Front Plant Sci 10:874

    PubMed Central  PubMed  Google Scholar 

  • Qiu Y, An K, Sun J, Chen X, Gong X, Ma L, Wu S, Jiang S, Zhang Z, Wang Y (2019) Investigating the effect of methyl jasmonate and melatonin on resistance of Malus crabapple ‘Hong Jiu’ to ozone stress. Environ Sci Poll Res 26:27761–27768

    CAS  Google Scholar 

  • Raftery AE, Zimmer A, Frierson DMW, Startz R, Liu P (2017) Less than 2 °C warming by 2100 unlikely. Nat Clim Chang 7:637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramakrishna B, Rao SSR (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252:665–677

    CAS  PubMed  Google Scholar 

  • Ramin AA (2003) Effects of auxin application on fruit formation in tomato growing under stress temperatures in the field. J Hortic Sci Biotechnol 78:706–710

    CAS  Google Scholar 

  • Rao NS, Shivashankara KS, Laxman RH (2016) Abiotic stress physiology of horticultural crops, vol 311. Springer, India

    Google Scholar 

  • Rao YR, Ansari MW, Singh AK, Bharti N, Rani V, Verma A, Gupta R, Sahoo RK, Abbas SZK, Bains G (2020) Ethylene mediated physiological response for in vitro development of salinity tolerant tomato. J Plant Interact 15:406–416

    CAS  Google Scholar 

  • Rehman H, Farooq M, Basra SM, Afzal I (2011) Hormonal priming with salicylic acid improves the emergence and early seedling growth in cucumber. J Agric Soc Sci 7:109–113

    Google Scholar 

  • Roshchina VV (1990) Regulation of chloroplast reactions by secondary metabolites acetylcholine and biogenic amines. Acta Bot Croat 49:29–35

    CAS  Google Scholar 

  • Roshchina VV, Yashin VA (2014) Neurotransmitters catecholamines and histamine in allelopathy: plant cells as models in fluorescence microscopy. Allelopath J 341:1–16

    Google Scholar 

  • Ruiz-Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo-Jiménez B, Porcel R, García-Mina JM, Ruyter-Spira C, López-Ráez JA (2016) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39:441–452

    CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed Central  PubMed  Google Scholar 

  • Saini S, Kaur N, Pati PK (2021) Phytohormones: key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicol Environ Saf 223:112578

    CAS  PubMed  Google Scholar 

  • Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M (2021) Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep 40(8):1305–1329

    CAS  PubMed  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    CAS  PubMed  Google Scholar 

  • Santisree P, Jalli LCL, Bhatnagar-Mathur P, Sharma KK (2020) Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses. Protective chemical agents in the amelioration of plant abiotic stress: biochemical molecular perspectives. Wiley, Hoboken

    Google Scholar 

  • Santoro V, Schiavon M, Gresta F, Ertani A, Cardinale F, Sturrock CJ, Celi L, Schubert A (2020) Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants 9:612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satisha J, Prakash GS, Murti GSR, Upreti KK (2005) Response of grape genotypes to water deficit: root, shoot, growth and endogenous hormones. Indian J Plant Physiol 10:225

    CAS  Google Scholar 

  • Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, Serrano M, Valero D (2011) Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem 124:964–970

    CAS  Google Scholar 

  • Seif SN, Tafazzoli E, Talaii AR, Aboutalebi A, Abdosi V (2014) Evaluation of two grape cultivars (Vitis vinifera L.) against salinity stress and surveying the effect of methyl jasmonate and epibrassinolide on alleviation the salinity stress. Int J Biosci 5:116–125

    Google Scholar 

  • Sergiev I, Todorova D, Shopova E, Brankova L, Jankauskienė J, Jurkonienė S, Gavelienė V, Mockevičiūtė R (2020) Assessment of synthetic auxin type compounds as potential modulators of herbicide action in Pisum sativum L. Biologia 75:1845–1853

    CAS  Google Scholar 

  • Serna M, Coll Y, Zapata PJ, Botella MÁ, Pretel MT, Amorós A (2015) A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Sci Hortic 185:105–112

    CAS  Google Scholar 

  • Shabala S, Shabala L, Barcelo J, Poschenrieder C (2014) Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ 37:2216–2233

    CAS  PubMed  Google Scholar 

  • Shah AA, Ahmed S, Yasin NA (2019) 24-epibrassinolide triggers cadmium stress mitigation in Cucumis sativus through intonation of antioxidant system. S Afr J Bot 127:349–360

    CAS  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (‘Pisum sativum’ L.). Australian J Crop Science 5:500

    CAS  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Hamayun M, Kang SM, Lee IJ (2015) Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiol Biochem 96:406–416

    CAS  PubMed  Google Scholar 

  • Shama MA, Moussa SAM, Abo NI, Fadel E (2016) Salicylic acid efficacy on resistance of garlic plants (Allium sativum, L.) to water salinity stress on growth, yield and its quality. Alex Sci Exch J 37:2

    Google Scholar 

  • Shang H, Cao S, Yang Z, Cai Y, Zheng Y (2011) Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after longterm cold storage. J Agric Food Chem 59:1264–1268

    CAS  PubMed  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    CAS  Google Scholar 

  • Shi J, Wang J, Wang N, Zhou H, Xu Q, Yan G (2019) Overexpression of StGA2ox1 gene increases the tolerance to abiotic stress in transgenic potato (Solanum tuberosum L.) plants. Appl Biochem Biotechnol 187:1204–1219

    CAS  PubMed  Google Scholar 

  • Shoresh M, Spivak M, Bernstein N (2011) Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Rad Biol Med 51:1221–1234

    CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, jong Yim W, Sa T, (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    CAS  PubMed  Google Scholar 

  • Skirycz A, Widrych A, Szopa J (2005) Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biol 5:1471–2229

    Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Ann Rev Plant Physiol Plant Mol Biol 51:49–81

    CAS  Google Scholar 

  • Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125

    CAS  Google Scholar 

  • Song C, Yan Y, Rosado A, Zhang Z, Castellarin SD (2019) ABA alleviates uptake and accumulation of zinc in grapevine (Vitis vinifera L.) by inducing expression of ZIP and detoxification-related genes. Front Plant Sci 10:872

    PubMed Central  PubMed  Google Scholar 

  • Srivastava V, Mishra S, Chowdhary AA, Lhamo S, Mehrotra S (2021) The γ-aminobutyric acid (GABA) towards abiotic stress tolerance. Compatible solutes engineering for crop plants facing climate change. Springer, Cham, pp 171–187

    Google Scholar 

  • Steward FC (1949) γ-Aminobutyric acid: a constituent of the potato tuber? Science 110:439–440

    Google Scholar 

  • Su N, Wu Q, Chen J, Shabala L, Mithofer A, Wang H, Qu M, Yu M, Cui J, Shabala S (2019) GABA operates upstream of H+-ATPase and improves salinity tolerance in Arabidopsis by enabling cytosolic K+ retention and Na+ exclusion. J Exp Bot 70:6349–6361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swamy KN, Vardhini BV, Ramakrishna B, Anuradha S, Siddulu N, Rao SSR (2014) Role of 28-homobrassinolide on growth biochemical parameters of Trigonella foenum-graecum L. plants subjected to lead toxicity. Int J Multi Curr Res 2:317–332

    Google Scholar 

  • Szafranska K, Reiter RJ, Posmyk MM (2017) Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. Front Plant Sci 8:878

    PubMed Central  PubMed  Google Scholar 

  • Tanveer M, Shabala S (2020) Neurotransmitters in signalling and adaptation to salinity stress in plants. Neurotransmitters in plant signaling and communication. Springer, Cham, pp 49–73

    Google Scholar 

  • Tiwari RK, Lal MK, Naga KC, Kumar R, Subhash CKN, S, (2020) Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci Hortic 272:109592

    CAS  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2021a) Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plantar 172:1212–1226

    CAS  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2021b) Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Mol Biol 109(4–5):385–399

    PubMed  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2021c) Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Mol Biol 109:385–399

    PubMed  Google Scholar 

  • Trujillo LE, Sotolongo M, Menendez C, Ochogavia ME, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma BPHJ, Vera P, Hernandez L (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol 49:512–525

    CAS  PubMed  Google Scholar 

  • Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Upreti KK, Srinivasa Rao NK, Jayaram HL (2012) Floral abscission in capsicum under high temperature: role of endogenous hormones and polyamines. Indian J Plant Physiol 17:207–214

    Google Scholar 

  • Van Tassel DL (1997) Identification and quantification of melatonin in higher plants. University of California, Davis

    Google Scholar 

  • Van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang WC, Bisseling T, Geurts R (2015) The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biol 15:1–15

    Google Scholar 

  • Vankova R, Gaudinova A, Dobrev P, Malbeck J, Haisel D, Motyka V (2011) Comparison of salinity and drought stress effects on abscisic acid metabolites activity of cytokinin oxidase/dehydrogenase and chlorophyll levels in radish and tabacco. Eco Quest 14:99–100

    Google Scholar 

  • Vijayakumari K, Puthur JT (2016) γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regul 78:57–67

    CAS  Google Scholar 

  • Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol 212:954–963

    CAS  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    PubMed Central  PubMed  Google Scholar 

  • Viswanath KK, Varakumar P, Pamuru RR, Basha SJ, Mehta S, Rao AD (2020) Plant lipoxygenases and their role in plant physiology. J Plant Biol 63:83–95

    CAS  Google Scholar 

  • Wang LJ, Li SH (2006) Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul 48:137–144

    CAS  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:1–10

    Google Scholar 

  • Wang Y, Wang Y, Kai W, Zhao B, Chen P, Sun L, Ji K, Li Q, Dai S, Sun Y, Wang Y (2014) Transcriptional regulation of abscisic acid signal core components during cucumber seed germination and under Cu2+, Zn2+, NaCl and simulated acid rain stresses. Plant Physiol Biochem 76:67–76

    CAS  PubMed  Google Scholar 

  • Wang J, Lin L, Luo L, Liao M, Lv X, Wang Z (2016) The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum. Environ Monit Assess 188:1–8

    Google Scholar 

  • Wang X, Gao Y, Wang Q (2019a) 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiol Biochem 135:30–40

    CAS  PubMed  Google Scholar 

  • Wang Y-H, Zhang G, Chen Y, Gao J, Yan-Ru S, Ming-Fa S, Jian-Ping C (2019b) Exogenous application of gibberellic acid and ascorbic acid improved tolerance of okra seedlings to NaCl stress. Acta Physiol Plant 41:93

    CAS  Google Scholar 

  • Wang D, Chen Q, Chen W, Guo Q, Xia Y, Wang S, Jing D, Liang G (2021) Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lind L.) seedlings. Environ Exp Bot 181:104291

    CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Google Scholar 

  • Wei L, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ, Zhang DW, Lin HH (2015) Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci 6:982

    PubMed Central  PubMed  Google Scholar 

  • Wei Y, Hu W, Wang Q, Zeng H, Li X, Yan Y (2017) Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatoninmediated plant response to fusarium wilt. J Pineal Res 62:e12367

    Google Scholar 

  • Wei Z, Li C, Gao T, Zhang Z, Liang B, Lv Z, Zou Y, Ma F (2019) Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiol Biochem 139:630–641

    CAS  PubMed  Google Scholar 

  • Wu H, Wu X, Li Z, Duan L, Zhang M (2012) Physiological evaluation of drought stress tolerance and recovery in caulifower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J Plant Growth Regul 31:113–123

    CAS  Google Scholar 

  • Wu X, He J, Chen J, Yang S, Zha D (2014a) Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma 251:169–176

    CAS  PubMed  Google Scholar 

  • Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D (2014b) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36:251–261

    CAS  Google Scholar 

  • Wu J, Shu S, Li C, Sun J, Guo S (2018) Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem 128:152–162

    CAS  PubMed  Google Scholar 

  • Wu X, Jia Q, Ji S, Gong B, Li J, Lü G, Gao H (2020) Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake, the GAD gene, amino acid synthesis and reactive oxygen species metabolism. BMC Plant Biol 20:1–21

    Google Scholar 

  • Wu S, Wang Y, Zhang J, Gong X, Zhang Z, Sun J, Chen X, Wang Y (2021) Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Hortic Plant J 7:13–22

    CAS  Google Scholar 

  • Xi Z, Wang Z, Fang Y, Hu Z, Hu Y, Deng M, Zhang Z (2013) Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (Vitis vinifera L.) under chilling stress. Plant Growth Regul 71:57–65

    CAS  Google Scholar 

  • Xia H, Ni Z, Hu R, Lin L, Deng H, Wang J, Tang Y, Sun G, Wang X, Li H, Liao M (2020) Melatonin alleviates drought stress by a non-enzymatic and enzymatic antioxidative system in kiwifruit seedlings. Int J Mol Sci 21:852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang L, Hu L, Xu W, Zhen A, Zhang L, Hu X (2016) Exogenous γ-aminobutyric acid improves the structure and function of photosystem ii in muskmelon seedlings exposed to salinity-alkalinity stress. PLoS ONE 11:e0164847

    PubMed Central  PubMed  Google Scholar 

  • Xie Y, Onik J, Hu X, Duan Y, Lin Q (2018) Effects of (S)-Carvone and gibberellin on sugar accumulation in potatoes during low temperature storage. Molecules 23:3118

    PubMed Central  PubMed  Google Scholar 

  • Xing Q, Zhang X, Li Y, Shao Q, Cao S, Wang F, Qi H (2019) The lipoxygenase CmLOX13 from oriental melon enhanced severe drought tolerance via regulating ABA accumulation and stomatal closure in Arabidopsis. Environ Exp Bot 167:103815

    CAS  Google Scholar 

  • Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L, Betts A, Herrmann J, Edwards EJ, Okamoto M (2021) GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat Commun 12:1952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yalpani N, Enyedi AJ, Leo’n J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis related proteins and virus resistance in tobacco. Planta 193:372–376

    CAS  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of cd toxicity in Capsicum frutescens var fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    CAS  PubMed  Google Scholar 

  • Yan Z, Zhang W, Chen J, Li X (2015) Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum, by regulating metal uptake and antioxidative capacity. Biol Plant 59:373–381

    CAS  Google Scholar 

  • Yan Y, Jing X, Tang H, Li X, Gong B, Shi Q (2019) Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant Cell Physiol 60:2051–2064

    CAS  PubMed  Google Scholar 

  • Yang A, Cao S, Yang Z (2011) γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem 129:1619–1622

    CAS  Google Scholar 

  • Yang P, Wang Y, Li J, Bian Z (2019) Effects of brassinosteroids on photosynthetic performance and nitrogen metabolism in pepper seedlings under chilling stress. Agronomy 9:839

    CAS  Google Scholar 

  • Yaseen M, Ahmad T, Sablok G, Standardi A, Hafiz IA (2013) Role of carbon sources for in vitro plant growth and development. Mol Biol Rep 40:2837–2849

    CAS  PubMed  Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nutr 31:593–612

    CAS  Google Scholar 

  • Yiu JC, Juang LD, Fang DYT, Liu CW, Wu SJ (2009) Exogenous putrescine reduces floodinginduced oxidative damage by increasing the antioxidant properties of Welsh onion. Sci Hortic 120:306–314

    CAS  Google Scholar 

  • Yosefi A, Akbar Mozafari A, Javadi T (2020) Jasmonic acid improved in vitro strawberry (Fragaria × ananassa Duch.) resistance to PEG-induced water stress. Plant Cell Tiss Org Cult 142:549–558

    CAS  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    CAS  PubMed  Google Scholar 

  • Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Xu T, Zhu M, Ma D, Li Z, Sun J (2018) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+–ATPase activity and K+/Na+ homeostasis in sweet potato. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00256

    Article  PubMed Central  PubMed  Google Scholar 

  • Zamani Z, Amiri H, Ismaili A (2019) Improving drought stress tolerance in fenugreek (Trigonella foenum-graecum) by exogenous melatonin. Plant Biosyst Int J Deal Aspec Plant Biol 154:1–13

    Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    CAS  Google Scholar 

  • Zhang YP, He J, Yang SJ, Chen YY (2014) Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo. Biol Plant 58:311–318

    CAS  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924

    CAS  PubMed  Google Scholar 

  • Zhang Z, Lan M, Han X, Wu J, Wang-Pruski G (2019) Response of ornamental pepper to high temperature stress and role of exogenous salicylic acid in mitigating high temperature. J Plant Growth Regul 39:133–146

    Google Scholar 

  • Zhang XW, Liu FJ, Zhai J, Bi HG, Ai XZ (2020) Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. Planta 251:1–19

    Google Scholar 

  • Zhao D, Shen L, Fan B, Yu M, Zheng Y, Lv S, Sheng J (2009) Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits. FEBS Lett 583:3329–3334

    CAS  PubMed  Google Scholar 

  • Zhao ML, Wang JN, Shan W, Fan JG, Kuang JF, Wu KQ, Li XP, Chen WX, He FY, Chen JY (2013) Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ 36:30–51

    PubMed  Google Scholar 

  • Zhao S, Ma Q, Xu X, Li G, Hao L (2016) Tomato jasmonic acid-defcient mutant spr2 seedling response to cadmium stress. J Plant Growth Regul 35:603–610

    CAS  Google Scholar 

  • Zhao H, Zhang K, Zhou X, Xi L, Wang Y, Xu H (2017) Melatonin alleviates chilling stress in cucumber seedlings by up-regulation of cszat12 and modulation of polyamine and abscisic acid metabolism. Sci Rep 7:4998

    PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Song C, Brummell DA, Qi S, Lin Q, Bi J, Duan Y (2021a) Salicylic acid treatment mitigates chilling injury in peach fruit by regulation of sucrose metabolism and soluble sugar content. Food Chem 358:129867

    CAS  PubMed  Google Scholar 

  • Zhao Y, Song C, Brummell DA, Qi S, Lin Q, Duan Y (2021b) Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism. Food Chem 338:128005

    CAS  PubMed  Google Scholar 

  • Zheng X, Li Y, Xi X, Ma C, Sun Z, Yang X, Li X, Tian Y, Wang C (2021) Exogenous strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiol Biochem 159:113–122

    CAS  PubMed  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, Zhu X, Li X, Fang W (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic Res 1:1–9

    Google Scholar 

  • Zhou YL, Huo SF, Wang LT, Meng JF, Zhang ZW, Xi ZM (2018) Exogenous 24-epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physio Biochem 130:555–565

    CAS  Google Scholar 

  • Zhu Z, Ding Y, Zhao J, Nie Y, Zhang Y, Sheng J, Tang X (2016) Effects of postharvest gibberellic acid treatment on chilling tolerance in cold-stored tomato (Solanum lycopersicum L.) fruit. Food Bioprocess Technol 9:1202–1209

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAA, RKT, MKL, and SN conceptualization and writing—original draft preparation; RS, MMA, LUK, MAN, BS, SB, and MS, writing—original draft preparation, figures, and table. RK and AK, supervision and writing—review and editing. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Rahul Kumar Tiwari, Milan Kumar Lal or Safina Naz.

Ethics declarations

Conflict of interest

No conflict of interest is declared by all authors.

Additional information

Handling Editor: Tariq Aftab.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altaf, M.A., Shahid, R., Kumar, R. et al. Phytohormones Mediated Modulation of Abiotic Stress Tolerance and Potential Crosstalk in Horticultural Crops. J Plant Growth Regul 42, 4724–4750 (2023). https://doi.org/10.1007/s00344-022-10812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10812-0

Keywords

Navigation