Skip to main content
Log in

Exogenous Application of Salicylic Acid Mitigates the Toxic Effect of Pesticides in Vigna radiata (L.) Wilczek

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In this study, we evaluated the pesticide stress response of Vigna radiata (L.) Wilczek (Greengram) and explored the mitigative role of exogenous salicylic acid against pesticide toxicity by assessing various biochemical (enzymatic and non-enzymatic) parameters. The pesticides used in the present experiment were H.A.M-45 (fungicide), Termite kill (insecticide), and Anchor (herbicide), which are commonly used in agricultural fields and storage of grains. Primarily, LC50 was calculated, for defining the maximum permissible concentrations of pesticides which could be used, and thus experimental concentrations used were 1/2 LC50, LC50, and 2 LC50. Exposure of V. radiata to pesticide toxicity at the germination stage for 24 h significantly decreased their growth by reducing the growth-contributing parameters as compared with unstressed. Henceforth, a significant decrease was observed in photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), whereas a significant increase was recorded in superoxide dismutase, peroxidase, and catalase (enzymatic biochemical parameters). Exogenous salicylic acid (1 mM) application mitigated the pesticide toxicity when applied together with the pesticide. The positive mitigative effect of salicylic acid was recorded in terms of significant increase in enzymatic biochemical parameters, thus revealing that exogenous application can minimize oxidative stress and consequently contribute to improvement of photosynthetic pigments. Therefore, salicylic acid-treated seeds of V. radiata grown under pesticide stress could be considered to be of improved quality compared to non-treated seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A (2004) Pesticides and oxidative stress: a review. Med Sci Monit 10:141–147

    Google Scholar 

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    CAS  PubMed  Google Scholar 

  • Agarwal S, Sairam RK, Srivastava GC, Tyagi A, Meena RC (2005) Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedling. Plant Sci 169:559–570

    CAS  Google Scholar 

  • Akbulut GB, Yigit E, Bayram D (2015) Investigation of the effects of salicylic acid on some biochemical parameters in Zea mays to glyphosate herbicide. J Environ Anal Toxicol 5:271

    Google Scholar 

  • Ananieva EA, Christov KN, Popova LP (2004) Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to Paraquat. J Plant Physiol 161:319–328

    CAS  PubMed  Google Scholar 

  • Anitha SR, Savitha G (2013) Impact of mancozeb stress on seedling growth, seed germination, chlorophyll and phenolic contents of rice cultivars. Int J Sci Res 4:292–296

    Google Scholar 

  • Anwar S, Iqbal M, Raza SH, Iqbal N (2013) Efficacy of seed preconditioning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) seedling. Pak J Bot 45:157–162

    Google Scholar 

  • Arnon D (1949) Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakr RF, Kamel AM, Sheba SA, Abdel-Haleem DR (2010) A mathematical model for estimating the LC50 (or LD50) among an insect life cycle. Egypt Acad J Biol Sci 3:75–81

    Google Scholar 

  • Bashir F, Siddiqi TO, Mahmooduzzafar Iqbal M (2007) The antioxidative response system in Glycine max (L.) Merr. exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut 147:94–100

    CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Bolognesi C, Merlo FD (2011) Pesticides: human health effects. In Nriagu JO, Encyclopedia of environmental health. Elsevier, Burlington

    Google Scholar 

  • Bowler C, Anmontagu M, Inze D (1992) Superoxide dismutase and stress tolerance: annual review plant physiology. Plant Mol Biol 43:83–116

    CAS  Google Scholar 

  • Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant 33:273–278

    Google Scholar 

  • Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CCI-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    CAS  PubMed  Google Scholar 

  • Chris A, Luxmisha G, Masih J, Abraham G (2011) Growth, photosynthetic pigments and antioxidant responses of Azolla filiculoides to monocrotophos toxicity. J Chem Pharmaceut Res 3:381–388

    CAS  Google Scholar 

  • Cui J, Zhang R, Wu GL, Zhu HM, Yang H (2010) Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.). Arch Environ Contam Toxicol 59:100–108

    CAS  PubMed  Google Scholar 

  • Dat JF, Lopez-Delago H, Foyer CH, Scott IM (1998) Parallel changes in H2 O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dey A, De JN (2012) Antioxidative potential of bryophytes: stress tolerance and commercial perspectives: a review. Pharmacologia 3:151–159

    Google Scholar 

  • El-Tayeb MA (2005) Response of barley grain to the interactive effect of salinity and salicylic acid. Plant Growth Regul 42:215–224

    Google Scholar 

  • El-Tayeb MA, El-Enany AE, Ahmed NI (2006) Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Int J Bot 2:372–379

    CAS  Google Scholar 

  • Euler HV, Josephson K (1927) Uber Katalase. I. Justus Liebigs Annalen Der. Chemie 452:158–181

    Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba- Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    CAS  PubMed  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55

    Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf AM, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan V, Thomas G (2001) Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant Sci 160:1095–1106

    CAS  PubMed  Google Scholar 

  • Ghai N, Setia RC, Setia N (2002) Effect of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphology 52:83–87

    Google Scholar 

  • Gopi R, Jaleel CA, Sairam R, Lakshmanan GMA, Gomithinayagam M, Pannerselvem R (2007) Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B 60:180–186

    CAS  Google Scholar 

  • Harnpicharnchai K, Chaiear N, Charerntanyarak L (2013) Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand. Southeast Asian J Trop Med Publ Health 44:1088

    CAS  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Yaakov EB, Mett A, Shiboleth YM (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is post translationally regulated. Plant Cell 19:1007–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Alam Md M, Nahar K, Ahamed KU, Fujita M (2014) Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Aust J Crop Sci 8:631–639

    CAS  Google Scholar 

  • Hawkins TS, Gardiner ES, Comer GS (2009) Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. J Nat Conserv 17:123–127

    Google Scholar 

  • Hayat S, Ahmad A. (eds) (2007) Salicylic acid: a plant hormone. Springer, Dordrecht

    Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    CAS  Google Scholar 

  • Horbowicz M, Sempruch C, Kosson R, Koczkodaj D, Walas D (2013) Effect of fluazifop-p-butyl treatment on pigments and polyamines level within tissues of non-target maize plants. Pest Biochem Physiol 107:78–85

    CAS  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Google Scholar 

  • Jan S, Parween T, Siddiqi TO, Mahmooduzzafar (2012) Effect of gamma radiation on morphological, biochemical and physiological aspects of plants and plant products. Environ Rev 20:7–39

    Google Scholar 

  • JanakiDevi V, Nagarani N, YokeshBabu M, Kumaraguru AK, Ramakritinan CM (2013) A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere 90:1158–1166

    CAS  PubMed  Google Scholar 

  • Jat RA, Wani SP, Sahrawat KL (2012) Conservation agriculture in the semi-arid tropics: prospects and problems. Adv Agron 117:191–273

    CAS  Google Scholar 

  • Jiang L, Yang H (2009) Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Saf 72:1687–1693

    CAS  PubMed  Google Scholar 

  • Jianga L, Maa L, Suia Y, Hna SQ, Wua ZY, Fenga YX, Yanga H (2010) Effect of manure compost on the herbicide prometryne bioavailability to wheat plants. J Hazard Mater 184:337–344

    Google Scholar 

  • Kato M, Shimizu S (1985) Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol 26:1291–1301

    CAS  Google Scholar 

  • Kawano T, Furuichi T, Muto S (2004) Controlled salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnol 21:319–335

    CAS  Google Scholar 

  • Khan SM, Kour G (2007) Sub acute oral toxicity of chlorpyriphos and protective effect of green tea extract. Pest Biochem Physiol 89:118–123

    CAS  Google Scholar 

  • Khan H, Zeb A, Ali Z, Shah SM (2009) Impact of five insecticides on chickpea (Cicer arietinum L.) nodulation, yield and nitrogen fixing rhizospheric bacteria. Soil Environ 28:56–59

    CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    CAS  PubMed  Google Scholar 

  • Khatun S, Babar Ali M, Hahn EJ, Paek KY (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64:279–285

    CAS  Google Scholar 

  • Khodary SE (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Kumar NG, Nirmala P, Jayappa AH (2010) Effect of various methods of application of insecticides on the incidence of serpentine leaf miner, Liriomyza trifolii (burgess) and other pests in soybean. Karnataka J Agric Sci 23:130–132

    Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermo tolerance. Plant Physiol 138:882–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luck H (1963) Peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press Inc, New York, pp 895–897

    Google Scholar 

  • Mahmood Q, Bilal M, Jan S (2014) Herbicides, pesticides, and plant tolerance: an overview. Emerging technologies and management of crop stress tolerance. Chapter 17:423–448

    Google Scholar 

  • Majumdar K, Singh N (2007) Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 66:630–637

    CAS  PubMed  Google Scholar 

  • Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. Lycopersici in tomato. Plant Physiol Biochem 47:642–649

    CAS  PubMed  Google Scholar 

  • Mei X, Lin DH, Xu Y, Wu YY, Tu YY (2009) Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves. Food Chem 115:569–573

    CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S (2014) Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res 762:133–166

    PubMed  Google Scholar 

  • Morimura T, Ohya T, Ikawa T (1996) Presence of ascorbate-peroxidizing enzymes in roots of Brassica campestris L. cv Komatsuna. Plant Sci 117:55–63

    CAS  Google Scholar 

  • Naksen W, Prapamontol T, Mangklabruks A, Chantara S, Thavornyutikarn P, Robson MG, Ryan PB, Barr DB, Panuwet P (2016) A single method for detecting 11 organophosphate pesticides in human plasma and breast milk using GC-FPD. J Chromatogr B 1025:92–104

    CAS  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    CAS  PubMed  Google Scholar 

  • Pandey KB, Rizvi SI (2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev 3:2–12

    PubMed  PubMed Central  Google Scholar 

  • Parida A, Dam AB, Dam P (2002) NaCl stress causes changes in photosynthetic pigments proteins and other metabolic components in the leaves of a true mangrove Bruguiera parviflora in hydroponic cultures. J Plant Biol 45:28–36

    CAS  Google Scholar 

  • Peixoto F, Alves-Fernandes D, Santos D, Fontaınhas-Fernandes A (2006) Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pest Biochem Physiol 85:91–96

    CAS  Google Scholar 

  • Popova LP, Ananieva EA, Alexieva VS (2002) Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol 159:685–693

    Google Scholar 

  • Radwan DEM (2012) Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pestic Biochem Physiol 102:182–188

    CAS  Google Scholar 

  • Rajabi R, Nejad RAK, Ghanati F, Najafi F (2012) Effects of stress induced by post-emergence application of metribuzin herbicide on wheat. Afr J Biotechnol 11:3773–3778

    CAS  Google Scholar 

  • Rao VJ, Parvati K, Kavitha P, Jakka NM, Pallela R (2005) Effect of chlorpyrifos and monocrotophos on loco motor behavior and acetyl cholinesterase activity of subterranean termites, Odontotermes obesus. Pest Manag Sci 61:417–421

    CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Shoba V, Elanchezhiyan C, Hemalatha S, Jagadeesan G (2010) Evaluation of LC50 value of the phytopesticide nimbecidine on the adult male insect Sphaerodema rusticum (Heteroptera: Belostomatidae). Int J Recent Sci Res 8:177–180

    Google Scholar 

  • Silla F, González-Gil A, González-Molina ME, Mediavilla S, Escudero A (2010) Estimation of chlorophyll in Quercus leaves using a portable chlorophyll meter: effects of species and leaf age. Ann For Sci 67:1–7

    Google Scholar 

  • Singh G, Kaur D (2016) Studies on the antioxidative stress responses of fungicides carbendazim and mancozeb in seedlings of brassica (Brassica compestris L.). Int Res J Environ Sci 5:57–62

    CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. J Plant Growth Regul 39:137–141

    CAS  Google Scholar 

  • Singh H, Singh NB, Singh A, Hussain I, Yadav V (2016) Physiological and biochemical effects of salicylic acid on Pisum sativum exposed to isoproturon. Arch Agron Soil Sci 62:1425–1436

    Google Scholar 

  • Song NH, Yin X, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 69:1779–1787

    Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Varshney S, Khan MIR, Masood A, Per TS, Rasheed F, Khan NA (2015) Contribution of plant growth regulators in mitigation of herbicidal stress. J Plant Biochem Physiol 3:160

    Google Scholar 

  • Wang C, Zhang Q (2017) Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotoxicol Environ Saf 137:218–224

    CAS  PubMed  Google Scholar 

  • Wu J, Laird DA (2003) Abiotic transformation of chlorpyrifos oxon in chlorinated water. Environ Toxicol Chem 22:261–264

    CAS  PubMed  Google Scholar 

  • Wu XY, Von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116:37–47

    CAS  PubMed  Google Scholar 

  • Wu C, Niu Z, Tang Q, Huang W (2008) Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agric For Meteorol 148:1230–1241

    Google Scholar 

  • Wu GL, Cui EJ, Tao EL, Yang EH (2010) Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology 19:124–132

    CAS  PubMed  Google Scholar 

  • Xia XJ, Huang YY, Wang L, Huang LF, Yu YL, Zhou YH, Yu JQ (2006) Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pest Biochem Physiol 86:42–48

    CAS  Google Scholar 

  • Yang ZM, Wang J, Wang SH, Xu LL (2003) Salicylic acid-induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217:168–174

    CAS  PubMed  Google Scholar 

  • Yildiztekin M, Kaya C, Tuna AL, Ashraf M (2015) Oxidative stress and antioxidative mechanisms in tomato (Solanum lycopersicum L) plants sprayed with different pesticides. Pak J Bot 47:717–721

    CAS  Google Scholar 

  • Yin XL, Jiang L, Song NH, Yang H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:4825–4831

    CAS  PubMed  Google Scholar 

  • Zhang GL, Chen WJ, Qiu LM, Sun GR, Dai QG, Zhang HC (2009) Physiological response to 1,2,4-trichlorobenzene stress of different rice genotypes. Acta Agron Sin 35:733–740

    CAS  Google Scholar 

Download references

Acknowledgements

FF and AK acknowledge the communication cell, Integral University for reviewing our paper and allotting communication number (IU/R&D/2017-MCN000156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Srivastava.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatma, F., Kamal, A. & Srivastava, A. Exogenous Application of Salicylic Acid Mitigates the Toxic Effect of Pesticides in Vigna radiata (L.) Wilczek. J Plant Growth Regul 37, 1185–1194 (2018). https://doi.org/10.1007/s00344-018-9819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9819-6

Keywords

Navigation