Skip to main content
Log in

Effects of γ-Aminobutyric Acid, Glutamic Acid, and Calcium Chloride on Rice (Oryza sativa L.) Under Cold Stress During the Early Vegetative Stage

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) is one of the most important cereals grown worldwide, mostly in warm regions. However, cold temperature is a major environmental factor that limits rice cultivation in temperate climates. γ-Aminobutyric acid (GABA), glutamic acid (Glu), and calcium chloride (CaCl2) play significant roles in key regulatory pathways throughout plant development. Here, we investigated the effects of Glu, CaCl2, and GABA in the culture medium on the cold tolerance of rice at the seedling stage. The medium components for cold tolerance of rice were optimized using response surface methodology (RSM). Plants treated with cold stress alone (without Glu, CaCl2, or GABA applications) displayed decreased weight, lower relative water content (RWC), maximum photochemical efficiency of PSII (F v/F m) and PSII efficiency, and higher relative electrolyte leakage (REL). However, after application of Glu, CaCl2, and GABA, the opposite results were documented, which could be due to an alleviation of cold-induced effects by restoration of membrane integrity. However, the levels of REL were considerably decreased due to Glu, CaCl2, and GABA treatment. RWC, F v/F m, PSII efficiency, and the average of subordinate functional values (ASFV) increased with the addition of Glu, CaCl2 and GABA. A central composite design indicated that the optimal concentrations of culture components for the cold tolerance of rice were 2.21 mg/mL, 2.94 mM and 2.68 mM of Glu, CaCl2, and GABA, respectively, and the maximal ASFV (0.987) was obtained under optimal conditions. Analysis of variance for the regression model suggested that the model can predict exactly the cold tolerance of rice seedlings, and the optimal culture components can be used to enhance the cold tolerance of rice seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akcay N, Bor M, Karabudak T, Ozdemir F, Turkan I (2012) Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169:452–458

    Article  CAS  PubMed  Google Scholar 

  • Al-Baldawi IAW, Sheikh Abdullah SR, Abu Hasan H, Suja F, Anuar N, Mushrifah I (2014) Optimized conditions for phytoremediation of diesel by Scirpus grossus in horizontal subsurface flow constructed wetlands (HSFCWs) using response surface methodology. J Environ Manag 140:152–159

    Article  CAS  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28:165–181

    Article  CAS  PubMed  Google Scholar 

  • Aurisano N, Bertani A, Reggiani R (1995) Involvement of calcium and calmodulin in protein and amino acid metabolism in rice roots under anoxia. Plant Cell Physiol 36:1525–1529

    CAS  Google Scholar 

  • Bonnecarrere V, Borsani O, Diaz P, Capdevielle F, Blanco P, Monza J (2011) Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci 180:726–732

    Article  CAS  PubMed  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  CAS  PubMed  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fait A, Yellin A, Fromm H (2005) GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett 579:415–420

    Article  CAS  PubMed  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  CAS  PubMed  Google Scholar 

  • Fennell A, Markhart AH (1998) Rapid acclimation of root hydraulic conductivity to low temperature. J Exp Bot 49:879–884

    Article  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  CAS  PubMed  Google Scholar 

  • Ghazy UMM (2014) Modifications of evaluation index and subordinate function formulae to determine superiority of mulberry silkworm crosses. J Basic Appl Zool 67:1–9

    Article  Google Scholar 

  • Guimarães FVA, de Lacerda CF, Marques EC, de Miranda MRA, de Abreu CEB, Prisco JT, Gomes-Filho E (2011) Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regul 65:55–63

    Article  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirotsu N, Makino A, Ushio A, Mae T (2004) Changes in the thermal dissipation and the electron flow in the water–water cycle in rice grown under conditions of physiologically low temperature. Plant Cell Physiol 45:635–644

    Article  CAS  PubMed  Google Scholar 

  • Hölzl G, Witt S, Gaude N, Melzer M, Schöttler MA, Dörmann P (2009) The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis. Plant Physiol 150:1147–1159

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong-Bo S, Li-Ye C, Ming-An S, Shi-Qing L, Ji-Cheng Y (2008) Bioengineering plant resistance to abiotic stresses by the global calcium signal system. Biotechnol Adv 26:503–510

    Article  PubMed  Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49:81–84

    Article  CAS  Google Scholar 

  • Jeong SW, Choi SM, Lee DS, Ahn SN, Hur Y, Chow WS, Park Y-I (2002) Differential susceptibility of photosynthesis to light-chilling stress in rice (Oryza sativa L.) depends on the capacity for photochemical dissipation of light. Mol Cells 13:419–428

    CAS  PubMed  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2004) Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 82:37–42

    Article  CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 27:210–218

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S, Laskowski K, Shukla V, Merewitz EB (2013) Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ-aminobutyric acid on perennial ryegrass. J Am Soc Hortic Sci 138:358–366

    Google Scholar 

  • Li X, Cen H, Peng L, Li Y, Sun L, Cai S, Huang Z (2015) Tolerance performance of the cool-season turfgrass species Festuca ovina, Lolium perenne, Agrostis tenuis, and Poa trivialis to sulfur dioxide stress. J Plant Interact 10:75–86

    Article  CAS  Google Scholar 

  • Liu C, Zhao L, Yu G (2011) The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity. J Integr Plant Biol 53:608–618

    Article  CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57:3755–3766

    Article  CAS  PubMed  Google Scholar 

  • McCaig T, Romagosa I (1991) Water status measurements of excised wheat leaves: position and age effects. Crop Sci 31:1583–1588

    Article  Google Scholar 

  • Moghaddam SS, Moghaddam MRA, Arami M (2010) Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. J Hazard Mater 175:651–657

    Article  PubMed  Google Scholar 

  • Morsy MR, Jouve L, Hausman J-F, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nayyar H, Kaur R, Kaur S, Singh R (2014) γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. J Plant Growth Regul 33:408–419

    Article  CAS  Google Scholar 

  • Ramesh SA, Tyerman SD, Xu B, Bose J, Kaur S, Conn V, Domingos P, Ullah S, Wege S, Shabala S (2015) GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun 6:1–9

    Google Scholar 

  • Salvatierra A, Pimentel P, Almada R, Hinrichsen P (2016) Exogenous GABA application transiently improves the tolerance to root hypoxia on a sensitive genotype of Prunus rootstock. Environ Exp Bot 125:52–66

    Article  CAS  Google Scholar 

  • Shabala S, Shabala L, Barcelo J, Poschenrieder C (2014) Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant, Cell Environ 37:2216–2233

    CAS  Google Scholar 

  • Shang H, Cao S, Yang Z, Cai Y, Zheng Y (2011) Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. J Agric Food Chem 59:1264–1268

    Article  CAS  PubMed  Google Scholar 

  • Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012) Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci 193:130–135

    Article  PubMed  Google Scholar 

  • Shimono H, Hasegawa T, Fujimura S, Iwama K (2004) Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages. Field Crop Res 89:71–83

    Article  Google Scholar 

  • Shimono H, Okada M, Kanda E, Arakawa I (2007) Low temperature-induced sterility in rice: evidence for the effects of temperature before panicle initiation. Field Crop Res 101:221–231

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Silveira JAG, Araújo SAM, Lima JPMS, Viégas RA (2009) Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ Exp Bot 66:1–8

    Article  CAS  Google Scholar 

  • Song H, Xu X, Wang H, Wang H, Tao Y (2010) Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric 90:1410–1416

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven AS, Demmig-Adams B, Adams WW III (1997) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol 113:817–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walch-Liu P, Forde BG (2008) Nitrate signalling mediated by the NRT1. 1 nitrate transporter antagonises l-glutamate-induced changes in root architecture. Plant J 54:820–828

    Article  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG (2006) Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    Article  PubMed  Google Scholar 

  • Wang Y, Luo Z, Huang X, Yang K, Gao S, Du R (2014) Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Sci Hortic-Amst 168:132–137

    Article  CAS  Google Scholar 

  • Xu C, Li X, Zhang L (2013) The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions. PLoS One 8:e68214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Cao S, Yang Z, Cai Y, Zheng Y (2011) γ-Aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chem 129:1619–1622

    Article  CAS  Google Scholar 

  • Yang S, Wang F, Guo F, Meng JJ, Li XG, Wan SB (2015) Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance. J Integr Plant Biol 57:486–495

    Article  CAS  PubMed  Google Scholar 

  • Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52:689–698

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Yang R, Gu Z (2014a) Calcium regulating growth and GABA metabolism pathways in germinating soybean (Glycine max L.) under NaCl stress. Eur Food Res Technol 239:149–156

    Article  CAS  Google Scholar 

  • Yin Y, Yang R, Guo Q, Gu Z (2014b) NaCl stress and supplemental CaCl2 regulating GABA metabolism pathways in germinating soybean. Eur Food Res Technol 238:781–788

    Article  CAS  Google Scholar 

  • Yun KY, Park MR, Mohanty B, Herath V, Xu FY, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de los Reyes BG (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10:1–29

    Article  Google Scholar 

  • Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported through funding from NSFC Projects (31571609) and National Focus Research and Development Project (2016YFD0300104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Zou, D., Wang, J. et al. Effects of γ-Aminobutyric Acid, Glutamic Acid, and Calcium Chloride on Rice (Oryza sativa L.) Under Cold Stress During the Early Vegetative Stage. J Plant Growth Regul 36, 240–253 (2017). https://doi.org/10.1007/s00344-016-9634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9634-x

Keywords

Navigation