Skip to main content

Advertisement

Log in

Effects of stocking density on the growth and immunity of Atlantic salmon salmo salar reared in recirculating aquaculture system (RAS)

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Atlantic salmon reared in recirculating aquaculture system (RAS) may lead to inappropriately high stocking density, because fish live in a limited space. Finding the suitable stocking density of Atlantic salmon reared in RAS is very important for RAS industry. In this paper, the influence of stocking density on growth and some stress related physiological factors were investigated to evaluate the effects of stocking density. The fish were reared for 220 days at five densities (A: 24 kg/m3; B: 21 kg/m3; C: 15 kg/m3; D: 9 kg/ m3 and E: 6 kg/m3 ). The results show that 30 kg/m3 might be the maximum density which RAS can afford in China. The stocking densities under 30 kg/m3 have no effect on mortality of Atlantic salmon reared in RAS. However, the specific growth rate (SGR), final weight and weight gain in the high density group were significantly lower than the lower density groups and middle density groups. Moreover, feed conversion rate (FCR) had a negative correlation with density. Plasma hormone T3 and GH showed significant decrease with the increase of the stocking density of the experiment. Furthermore, thyroid hormone (T3), GH (growth hormone) activities were decreased with stocking density increase. However, plasma cortisol, GOT (glutamic oxalacetic transaminase) and GPT (glutamic pyruvic transaminase) activities were increase with stocking density increase. And the stocking density has no effects on plasma lysozyme of Atlantic salmon reared in RAS. These investigations would also help devise efficient ways to rear adult Atlantic salmon in China and may, in a way, help spread salmon mariculture in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad H I, Verma A K, Rani A M B, Rathore G, Saharan N, Gora A H. 2016. Growth, non–specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457: 61–67, https://doi.org/10. 1016/j.aquaculture.2016.02.011.

    Article  Google Scholar 

  • Ashley P J. 2007. Fish welfare: current issues in aquaculture. Applied Animal Behaviour Science, 104 (3–4): 199–235, https://doi.org/10.1016/j.applanim.2006.09.001.

    Article  Google Scholar 

  • Bolasina S, Tagawa M, Yamashita Y, Tanaka M. 2006. Effect of stocking density on growth, digestive enzyme activity and cortisollevel in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture, 259 (1–4): 432–443, https://doi.org/10.1016/j.aquaculture.2006.05. 021.

    Article  Google Scholar 

  • Bonga S E W. 1997. The stress response in fish. Physiological Reviews, 77 (3): 591–625.

    Article  Google Scholar 

  • Carter P. 1978. A convenient method for the determination of nonspecific binding in commercially available solid phase iodine labeled radioimmunoassay kits. Clinical Biochemistry, 11 (3): 97–100, https://doi.org/10.1016/S0009–9120(78)90070–X.

    Article  Google Scholar 

  • Chi L, Li X, Liu Q H, Liu Y. 2017. Photoperiod regulate gonad development via kisspeptin/kissr in hypothalamus and saccus vasculosus of Atlantic salmon ( Salmo salar ). PLoS One, 12 (2): e0169569, https://doi.org/10.1371/journal. pone.0169569.

    Article  Google Scholar 

  • Costas B, Aragão C, Dias J, Afonso A, Conceicao L E C. 2013. Interactive effects of a high–quality protein diet and high stocking density on the stress response and some innate immune parameters of Senegalese sole Solea senegalensis. Fish Physiology and Biochemistry, 39: 1 141–1 151, https://doi.org/10.1007/s10695–013–9770–1.

    Article  Google Scholar 

  • Ellis T, North B, Scott A P, Bromage N R, Porter M, Gadd D. 2002. The relationships between stocking density and welfare in farmed rainbow trout. Journal of Fish Biology, 61 (3): 493–531, https://doi.org/10.1006/jfbi. 2002. 2057.

    Article  Google Scholar 

  • Geng X, Dong X H, Tan B P, Yang Q H, Chi S Y, Liu H Y, Liu X Q. 2012. Effects of dietary probiotic on the growth performance, non–specific immunity and disease resistance of cobia, Rachycentron canadum. Aquacult ure Nutr ition, 18 (1): 46–55, https://doi.org/10.1111/j. 1365–2095.2011.00875.x.

    Article  Google Scholar 

  • Greaves K, Tuene S. 2001. The form and context of aggressive behaviour in farmed Atlantic halibut ( Hippoglossus hippoglossus L.). Aquaculture, 193 (1–2): 139–147, https://doi.org/10.1016/S0044–8486(00)00476–2.

    Article  Google Scholar 

  • Hori T S, Gamperl A K, Afonso L O, Johnson S C, Hubert S, Kimball J, Bowman S, Rise M L. 2010. Heat–shock responsive genes identified and validated in Atlantic cod ( Gadus morhua) liver, head kidney and skeletal muscle using genomic techniques. BMC Genomics, 11: 72, https://doi.org/7210.1186/1471–2164–11–72.

    Article  Google Scholar 

  • Hosfeld C D, Hammer J, Handeland S O, Fivelstad S, Stefansson S O. 2009. Effects of fish density on growth and smoltification in intensive production of Atlantic salmon ( Salmo salar L.). Aquaculture, 294 (3–4): 236–241, https://doi.org/10.1016/j.aquaculture.2009.06.003.

    Article  Google Scholar 

  • Ingram G A. 1980. Substances involved in the natural resistance of fish to infection–a review. Journal of Fish Biology, 16 (1): 23–60, https://doi.org/10.1111/j.1095–8649. 1980.tb03685.x.

    Article  Google Scholar 

  • Laiz–Carrión R, Viana I R, Cejas J R, Ruiz–Jarabo I, Jerez S, Martos J A, Eduardo A B, Mancera J M. 2012. Influence of food deprivation and high stocking density on energetic metabolism and stress response in red porgy, Pagrus pagrus L. Aquaculture International, 20 (3): 585–599, https://doi.org/10.1007/s10499–011–9488–y.

    Article  Google Scholar 

  • Laursen D C, Silva P I M, Larsen B K, Höglund E. 2013. High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggests chronic stress at high rearing densities in farmed rainbow trout. Physiology & Behavior, 122: 147–154, https://doi. org/10.1016/j.physbeh.2013.08.026.

    Article  Google Scholar 

  • Leung L Y, Kwong A K Y, Man A K Y, Woo N Y S. 2008. Direct actions of cortisol, thyroxine and growth hormone on IGF–I mRNA expression in sea bream hepatocytes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151 (4): 705–710, https://doi.org/10.1016/j.cbpa.2008.08.023.

    Article  Google Scholar 

  • Li M J, Yin Y C, Hua H, Sun X M, Luo T, Wang J A, Jiang Y F. 2010. The reciprocal regulation ofγ–synuclein and IGF–I receptor expression creates a circuit that modulates IGF–I signaling. Journal of Biological Chemistry, 285 (40): 30 480–30 488, https://doi.org/10.1074/jbc. M110.131698.

    Article  Google Scholar 

  • Li X, Liu Y, Blancheton J P. 2013. Effect of stocking density on performances of juvenile turbot ( Scophthalmus maximus ) in recirculating aquaculture systems. Chinese Journal of Oceanology and Limnology, 31 (3): 514–522, https://doi. org/10.1007/s00343–013–2205–0.

    Article  Google Scholar 

  • Liu B L, Liu Y, Wang X P. 2015. The effect of stocking density on growth and seven physiological parameters with assessment of their potential as stress response indicators for the Atlantic salmon ( Sa l mo salar ). Mar Freshwat Behav Physiol., 48 (3): 177–192, https://doi.org/10.1080/1 0236244.2015.1034956.

    Article  Google Scholar 

  • López–Patiño M A, Conde–Sieira M, Gesto M, Librán–Pérez M, Soengas J L, Míguez J M. 2013. Melatonin partially minimizes the adverse stress effects in Senegalese sole ( Solea senegalensis ). Aquaculture, 388–391: 165–172, https://doi.org/10.1016/j.aquaculture.2013.01.023.

    Article  Google Scholar 

  • Martins C I M, Eding E H, Verdegem M C J, Heinsbroek L T N, Schneider O, Blancheton J P, d'Orbcastel E R, Verreth J A J. 2010. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquacultural Engineering, 43 (3): 83–93, https://doi.org/10.1016/j.aquaeng.2010.09. 002.

    Article  Google Scholar 

  • Montero D, Izquierdo M S, Tort L, Robaina L, Vergara J M. 1999. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiology and Biochemistry, 20 (1): 53–60, https://doi. org/10.1023/A:1007719928905.

    Article  Google Scholar 

  • Nardocci G, Navarro C, Cortés P P, Imarai M, Montoya M, Valenzuela B, Jara P, Acuña–Castillo C, Fernández R. 2014. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish & Shellfish Immunology, 40 (2): 531–538, https://doi.org/10.1016/j. fsi.2014.08.001.

    Article  Google Scholar 

  • Prusty A K, Kohli M P S, Sahu N P, Pal A K, Saharan N, Mohapatra S, Gupta S K. 2011. Effect of short term exposure of fenvalerate on biochemical and haematological responses in Labeo rohita (Hamilton) fingerlings. Pestic ide Biochemistry and Physiology, 100 (2): 124–129, https://doi.org/10.1016/j.pestbp.2011.02.010.

    Article  Google Scholar 

  • Salas–Leiton E, Anguis V, Martín–Antonio B, Crespo D, Planas J V, Infante C, Cañavate J P, Manchado M. 2010. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole ( Solea senegalensis ): potential effects on the immune response. Fish & Shellfish Immunology, 28 (2): 296–302, https://doi.org/10.1016/j. fsi.2009.11.006.

    Article  Google Scholar 

  • Schmid A C, Lutz I, Kloas W, Reinecke M. 2003. Thyroid hormone stimulates hepatic IGF–I mRNA expression in a bony fish, the tilapia Oreochromis mossambicus, in vitro and in vivo. General and Comparative Endocrinology, 130 (2): 129–134, https://doi.org/10.1016/S0016–6480 (02)00577–4.

    Article  Google Scholar 

  • Schmid A C, Reinecke M, Kloas W. 2000. Primary cultured hepatocytes of the bony fish, Oreochromis mossambicus, the tilapia: a valid toolfor physiological studies on IGF–I expression in liver. The Journal of Endocrinology, 166 (2): 265–273, https://doi.org/10.1677/joe.0.1660265.

    Article  Google Scholar 

  • Schram E, Van der Heul J W, Kamstra A, Verdegem M C J. 2006. Stocking density–dependent growth of Dover sole ( Solea solea ). Aquaculture, 252 (2–4): 339–347, https://doi.org/10.1016/j.aquaculture.2005.07.011.

    Article  Google Scholar 

  • Tort L. 2011. Stress and immune modulation in fish. Developmental and Comparative Immunology., 35 (12): 1 366–1 375, https://doi.org/10.1016/j.dci.2011.07.002.

    Article  Google Scholar 

  • Yarahmadi P, Miandare H K, Fayaz S, Caipang C M A. 2016. Increased stocking density causes changes in expression of selected stress–and immune–related genes, humoral innate immune parameters and stress responses of rainbow trout ( Oncorhynchus mykiss ). Fish & Shellfish Immunology, 48: 43–53, https://doi.org/10.1016/j.fsi. 2015.11.007.

    Article  Google Scholar 

  • Zhang X N, Tian H, Wang W, Ru S G. 2014. Monocrotophos pesticide decreases the plasma levels of total 3,3',5–triiodol–thyronine and alters the expression of genes associated with the thyroidal axis in female goldfish ( Carassius auratus ). PLoS One., 9 (9): e108972, https://doi.org/10. 1371/journal.pone.0108972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shihong Xu or Jun Li.

Additional information

Supported by the National Science Foundation for Young Scientists of China (No. 31402314,31402283), the Agency of Science and Technology of Shandong Province (No. 2013GHY11514), the Modern Agro-Industry Technology Research System (No. nycytx-50), the Scientific and Technology Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (Nos. 2015ASKJ02, 2015ASKJ02-03-03), the Youth Innovation Promotion Association CAS, the Chinese Academy of Science and Technology Service Network Planning (No. KFJ-EW-STS-060), the China Agriculture Research System (No. CARS-47), and the Shandong Provincial Key S&T Innovation Project (No. 2017CXGC0101)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chi, L., Liu, Q. et al. Effects of stocking density on the growth and immunity of Atlantic salmon salmo salar reared in recirculating aquaculture system (RAS). J. Ocean. Limnol. 37, 350–360 (2019). https://doi.org/10.1007/s00343-019-7350-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7350-7

Keyword

Navigation