Skip to main content
Log in

Convection: a neglected pathway for downward transfer of wind energy in the oceanic mixed layer

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Upper-ocean turbulent mixing plays a vital role in mediating air-sea fluxes and determining mixed-layer properties, but its energy source, especially that near the base of the mixed layer, remains unclear. Here we report a potentially significant yet rarely discussed pathway to turbulent mixing in the convective mixed layer. During convection, as surface fluid drops rapidly in the form of convective plumes, intense turbulence kinetic energy (TKE) generated via surface processes such as wave breaking is advected downward, enhancing TKE and mixing through the layer. The related power, when integrated over the global ocean except near the surface where the direct effect of breaking waves dominates, is estimated at O (1)TW, comparable to that required by maintaining the Meridional Overturning Circulation (MOC). The mechanism in question therefore deserves greater research attention, especially in view of the potential significance of its proper representation in climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anis A, Moum J N. 1994. Prescriptions for heat flux and entrainment rates in the upper ocean during convection. J. Phys. Oceanogr., 24 (10): 2 142–2 155.

    Article  Google Scholar 

  • Anis A, Moum J N. 1995. Surface wave–turbulence interactions. Scaling ε ( z ) near the sea surface. J. Phys. Oceanogr., 25 (9): 2 025–2 045.

    Article  Google Scholar 

  • Burchard H. 2002. Applied Turbulence Modelling in Marine Waters. Springer, Berlin Heidelberg, Germany. p.215.

    Google Scholar 

  • Cerovečki I, Talley L D, Mazloff M R, Maze G. 2013. Subantarctic mode water formation, destruction, and export in the eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., 43 (7): 1 485–1 511.

    Article  Google Scholar 

  • Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 (12): 2 546–2 559.

    Article  Google Scholar 

  • D’Asaro E A. 2014. Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6: 101–115.

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer A S, Lazar A, Iudicone D. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res., 109 (C12): C12003, https://doi.org/10.1029/2004JC002378.

    Article  Google Scholar 

  • Endoh T, Matsuno T, Yoshikawa Y, Tsutsumi E. 2014. Estimates of the turbulent kinetic energy budget in the oceanic convective boundary layer. J. Oceanogr., 70 (1): 81–90.

    Article  Google Scholar 

  • Furuichi N, Hibiya T. 2015. Assessment of the upper-ocean mixed layer parameterizations using a large eddy simulation model. J. Geophys. Res., 120 (3): 2 350–2 369, https://doi.org/10.1002/2014JC010665.

    Article  Google Scholar 

  • Galperin B, Kantha L H, Hassid S, Rosati A. 1988. A quasiequilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45 (1): 55–62.

    Article  Google Scholar 

  • Galperin B, Kantha L H, Mellor G L, Rosati A. 1989. Modeling rotating stratified turbulent flows with application to oceanic mixed layers. J. Phys. Oceanogr., 19 (7): 901–916.

    Article  Google Scholar 

  • Harcourt R R. 2013. A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43 (4): 673–697.

    Article  Google Scholar 

  • Harcourt R R. 2015. An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45 (1): 84–103.

    Article  Google Scholar 

  • Huang C J, Qiao F L. 2010. Wave-turbulence interaction and its induced mixing in the upper ocean. J. Geophys. Res., 115 (C4): C04026, https://doi.org/10.1029/2009JC005853.

    Google Scholar 

  • Iudicone D, Madec G, Blanke B, Speich S. 2008. The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr., 38 (7): 1 377–1 400.

    Article  Google Scholar 

  • Kantha L, Tamura H, Miyazawa Y. 2014. Comment on “Waveturbulence interaction and its induced mixing in the upper ocean” by Huang and Qiao. J. Geophys. Res., 119 (2): 1 510–1 515, https://doi.org/10.1002/2013JC009318.

    Article  Google Scholar 

  • Langmuir I. 1938. Surface motion of water induced by wind. Science, 87 (2250): 119–123.

    Article  Google Scholar 

  • Leibovich S. 1980. On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99 (4): 715–724.

    Article  Google Scholar 

  • Lenschow D H. 1974. Model of the height variation of the turbulence kinetic energy budget in the unstable planetary boundary layer. J. Atmos. Sci., 31 (2): 465–474.

    Article  Google Scholar 

  • Lombardo C P, Gregg M C. 1989. Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J. Geophy. Res., 94 (C5): 6 273–6 284.

    Article  Google Scholar 

  • Macdonald A M, Wunsch C. 1996. An estimate of global ocean circulation and heat fluxes. Nature, 382 (6590): 436–439.

    Article  Google Scholar 

  • Marshall J, Schott F. 1999. Open-ocean convection: observations, theory, and models. Rev. Geophys., 37 (1): 1–64.

    Article  Google Scholar 

  • McWilliams J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. J. Fluid Mech., 334: 1–30.

    Article  Google Scholar 

  • Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31 (7): 1 791–1 806.

    Article  Google Scholar 

  • Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 (4): 851–875.

    Article  Google Scholar 

  • Mironov D V, Gryanik V M, Moeng C H, Olbers D J, Warncke T H. 2000. Vertical turbulence structure and secondmoment budgets in convection with rotation: a large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 126 (563): 477–515.

    Article  Google Scholar 

  • Moeng C H, Sullivan P P. 1994. A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 (7): 999–1 022.

    Article  Google Scholar 

  • Noh Y, Min H S, Raasch S. 2004. Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34 (4): 720–735.

    Article  Google Scholar 

  • Oka E, Qiu B. 2012. Progress of North Pacific mode water research in the past decade. J. Oceanogr., 68 (1): 5–20.

    Article  Google Scholar 

  • Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 (1): 83–89.

    Article  Google Scholar 

  • Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO2. Science, 305 (5682): 367–371.

    Article  Google Scholar 

  • Shay T J, Gregg M C. 1984. Turbulence in an oceanic convective mixed layer. Nature, 310 (5975): 282–285.

    Article  Google Scholar 

  • Siedler G, Church J, Gould J. 2001. Ocean Circulation and Climate: Observing and Modelling the Global Ocean. Academic Press, London. 715p.

    Google Scholar 

  • Sloyan B M, Rintoul S R. 2001a. Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31 (4): 1 005–1 030.

    Article  Google Scholar 

  • Sloyan B M, Rintoul S R. 2001b. The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 (1): 143–173.

    Article  Google Scholar 

  • Steffen E L, D’Asaro E A. 2002. Deep convection in the Labrador Sea as observed by Lagrangian floats. J. Phys. Oceanogr., 32 (2): 475–492.

    Article  Google Scholar 

  • Stull R B. 1988. An introduction to boundary layer meteorology. Kluwer, Dordrecht, The Netherlands, p.683.

    Google Scholar 

  • Terray E A, Donelan M A, Agrawal Y C, Drennan W M, Kahma K K, Williams A J, Hwang P A, Kitaigorodskii S A. 1996. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 (5): 792–807.

    Article  Google Scholar 

  • Thorpe S A. 2004. Langmuir circulation. Annu. Rev. Fluid Mech., 36: 55–79.

    Article  Google Scholar 

  • Thorpe S A. 2005. The Turbulent Ocean. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wang W, Huang R X. 2004. Wind energy input to the surface waves. J. Phys. Oceanogr., 34 (5): 1 276–1 280.

    Article  Google Scholar 

  • Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid. Mech., 36: 281–314.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang  (张钰).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2015CB954300), the AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASTP-OS02), and the National Natural Science Foundation of China (No. 41376011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, W. Convection: a neglected pathway for downward transfer of wind energy in the oceanic mixed layer. J. Ocean. Limnol. 36, 1189–1197 (2018). https://doi.org/10.1007/s00343-018-7081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7081-1

Keyword

Navigation