Skip to main content
Log in

Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Caulerpa lentillifera is a green algae that distributes worldwide and is cultivated for food. We assessed vegetative propagation of C. lentillifera by measuring the specific growth rate (SGR) and chlorophyll fluorescence of the green algae cultured at different salinities and nutrient levels. The results indicated that C. lentillifera can survive in salinities ranging from 20 to 50, and can develop at salinities of 30 to 40. The maximum SGR for C. lentillifera occurred at a salinity of 35. Both chlorophyll content and the ratio of variable to maximum fluorescence (F v/F m) were also at a maximum at a salinity of 35. Photosynthesis was inhibited in salinities greater than 45 and less than 25. Both the maximum SGR and maximum chlorophyll content were found in algae treated with a concentration of 0.5 mmol/L of NO3-N and 0.1 mmol/L of PO4-P. The photosynthetic capacity of photosystem II (PSII) was inhibited in cultures of C. lentillifera at high nutrient levels. This occurred when NO3-N concentrations were greater than 1.0 mmol/L and when PO4-P concentrations were at 0.4 mmol/L. As there is strong need for large-scale cultivation of C. lentillifera, these data contribute important information to ensure optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agardh J G. 1837. Novae species algarum, quas in itinere ad oras Maris Rubri collegit Eduardus Rüppell: cum observationibus nonnullis in species rariores antea cognitas. Museum Senckenbergianum, 2: 169–174.

    Google Scholar 

  • Arnon D I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24: 1–15.

    Google Scholar 

  • Baker N R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59: 89–113.

    Article  Google Scholar 

  • Berges J A, Charlebois D O, Mauzerall D C. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiology, 110(2): 689–696.

    Google Scholar 

  • Bjomsater B R, Wheeler A. 1990. Effect of nitrogen and phosphorous supply on growth and tissue composition of Ulva fenestrate and Enteromorpha intestinalis (Ulvales, Chlorophyta). Journal of Phycology, 26: 603–611.

    Article  Google Scholar 

  • Björkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence at 77k among vascular plants of diverse origins. Planta, 170: 489–504.

    Article  Google Scholar 

  • Carpenter E J, Capone D G. 1983. Nitrogen in the Marine Environment. Academic Press, New York. p.487–512.

    Google Scholar 

  • Chen L H, Liu L. 2007. Application of the chlorophyll fluorescene in photosynthesis of algae. Jiangxi Science, 25(6): 788–790. (in Chinese with English abstract)

    Google Scholar 

  • Coppejans E, Beeckman T. 1989. Caulerpa section Sedoideae (Chlorophyta, Caulerpales) from the Kenyan coast. Nova Hedwigia, 49(3–4): 381–393.

    Google Scholar 

  • Deraxbudsarakom S, Songsangjinda P, Chiayvareesajja S, Tuntichodok P, Pariyawathee S. 2003. Optimum condition of environmental factors for growth of sea grape (Caulerpa lentillifera: J. Agardh). Warasan Kanpramong (Thai Fisheries Gazette), AGRIS Records, http://agris.fao.org/aos/records/TH2005000960.

    Google Scholar 

  • Freden A L, Raab T K, Rao I M. 1990. Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta, 181(3): 399–405.

    Article  Google Scholar 

  • Friedman G. M. 1968. Geology and geochemistry of reefs, carbonate sediments, and waters, Gulf of Aqaba (Elat), Red Sea. Journal of Sedimentary Research, 38(3): 895–919.

    Google Scholar 

  • Hackett H E. 1977. Marine Algae Known from the Maldive Islands. The Smithsonian Institution. Philippines.

    Google Scholar 

  • Hockin N L, Mock T, Mulholland F, Kopriva S, Malin G. 2012. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiology, 158(1): 299–312.

    Article  Google Scholar 

  • Huang H Z, Sun J Y, Shen H, Wang Y L. 2006. Effects of different inorganic nitrogen sources and concentrations on the growth and biochemical constituents of Gracilaria tenuistipitata var. liui Zhang et Xia. Marine Sciences, 30(9): 23–27. (in Chinese with English abstract)

    Google Scholar 

  • Huang J H. 2012. Effects of concentrations of nitrogen and phosphorus and different culture methods on the growth of Caulerpa lentillifera. Journal of Fujian Fisheries. 34(5): 416–419. (in Chinese with English abstract)

    Google Scholar 

  • Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 167: 191–194.

    Google Scholar 

  • Johnson G N, Young A J, Scholes J D, Horton P. 1993. The dissipation of excess excitation energy in British plant species. Plant Cell and Environment, 16: 673–679.

    Article  Google Scholar 

  • Kirst G O. 1989. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 21–53.

    Article  Google Scholar 

  • Kolber Z, Zehr J, Falkowski P G. 1988. Effect of growth irradiance and nitrogen limitation on photosynthesis energy conversion in photosystem II. Plant Physiology, 88(3): 923–929.

    Article  Google Scholar 

  • Kurashima A, Serisawa Y, Kanbayashi T, Toma T, Yokohama Y. 2003. Characteristics in photosynthesis of Caulerpa lentillifera J. Agardh and C. racemosa (Forsskal) J. Agardh var. laete-virens (Montagne) Weber-van Bosse with reference to temperature and light intensity. Japanese J. Phycol., 51(3): 167–172. (in Japanese with English abstract)

    Google Scholar 

  • Li J P, Zhao W H, Fu M, Miao H. Preliminary study on the effects of nitrogen and phosphorus on the growth of Enteromorpha prolifera. 2010. Marine Sciences, 34(4): 45–48.

    Google Scholar 

  • Liang Y, Jin Y M, Tian C Y. 2008. Effect of phosphorus restriction and supplement on the chlorophyll fluorescent parameters of Chlorella sp. South China Fisheries Science, 4(4): 1–7.

    Google Scholar 

  • Liang Z R, Wang F J, Sun X T, Wang W J, Ding C L, Li T. 2011. Effects of environment factors on young seedlings of Sargassum thunbergii by chlorophyll fluorescence method. Journal of Fisheries of China, 35(8): 1 225–1 232. (in Chinese with English abstract)

    Google Scholar 

  • Lichtenthaler H K, Buschmann C, Knapp M. 2005. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica, 43(3): 379–393.

    Article  Google Scholar 

  • Lichtenthaler H K. 1996. Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148(1): 4–14.

    Article  Google Scholar 

  • Liu J G, Lu K G, Lin W, Pang T, Wang L. 2008. Effects of temperature, nitrogen concentration and N/P ratio on N uptake rate of K appaphycus alvarezii. Ocean Limn. Sinica, 39(5): 529–535. (in Chinese with English abstract)

    Google Scholar 

  • Lobban C S, Harrison P J. 1994. Seaweed Ecology and Physiology. Cambridge University Press, New York.

    Book  Google Scholar 

  • Ma X Y, Liang Z R, Liu F L, Sun X T, Wang F J, Wang W J, Liu K. 2013. Effect of environmental factors on growth and photosynthetic characteristics of the receptacles of Sargassum thunbergii. Journal of Fishery Sciences of China. 20(4): 851–858. (in Chinese with English abstract)

    Article  Google Scholar 

  • Maxwell K, Johnson G N. 2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51(345): 659–668.

    Article  Google Scholar 

  • Menez E G, Calumpong H P. 1982. The Genus Caulerpa from Central Visayas. The Smithsonian Institution Press, Philippines. p.7.

    Google Scholar 

  • Niwano Y, Beppu F, Shimada T, Kyan R, Yasura K, Tamaki M, Nishino M, Midorikawa Y, Hamada H. 2009. Extensive screening for plant foodstuffs in Okinawa, Japan with anti-obese activity on adipocytes in vitro. Plant Foods Hum. Nutr., 64(1): 6–10.

    Article  Google Scholar 

  • O’Neal S W, Prince J S. 1988. Seasonal effects of light, temperature, nutrient concentration and salinity on the physiology and growth of Caulerpa paspaloides (Chlorophyceae). Marine Biology, 97: 17–24.

    Article  Google Scholar 

  • Peng C L, Wen X, Lin Z F, Zhou H C, Chen S W, Lin G Z. 2007. Response of Gracilaria lemaneiformis to nitrogen and phosphorus eutrophic seawater. Journal of Plant Ecology, 31(3): 505–512. (in Chinese with English abstract)

    Google Scholar 

  • Phillips J A, Conacher C, Horrocks J. 1999. Marine macroalgae from the gulf of Carpentaria, tropical northern Australia. Australian Systemetic Botany, 12: 449–478.

    Article  Google Scholar 

  • Qin C X, Liu C F, Zhang L Y. 2010. Removal of nitrate and phosphorus by Ulva pertusa and Chondrus ocellatus Holmes and biochemical compositions of macroalgae cultured at different concentration of nitrate. Journal of Hydroecology, 3(6): 41–46.

    Google Scholar 

  • Rao I M, Arulanantham A R, Terry N. 1989. Leaf phosphate status, photosynthesis and carbon partitioning in sugar beet: II. Diurnal changes in sugar phosphates, adenylates, and nicotinamidenucleotides. Plant Physiology, 90(3): 820–826.

    Google Scholar 

  • Rattan K J, Taylor W D, Smith R E. 2012. Nutrient status of phytoplankton across a trophic gradient in Lake Erie: evidence from new fluorescence methods. Canadian Journal of Fisheries and Aquatic Sciences, 69(1): 94–111.

    Article  Google Scholar 

  • Saito H, Xue C, Yamashiro R, Moromizato S, Itabashi Y. 2010. High polyunsaturated fatty acid levels in two subtropical macroalgae, Cladosiphono kamuranus and Caulerpa lentillifera. J. Phycol., 46(4): 665–673.

    Article  Google Scholar 

  • Schils T, Coppejans E. 2003. Phytogeography of upwelling areas in the Arabian Sea. J. Biogeography, 30: 1 339–1 356.

    Article  Google Scholar 

  • Shi J H. 2008. Field Survey and Culture Studies of Caulerpa in Taiwan. National Sun Yat-sen University, Taiwan. Mc. degree thesis. 102p. (in Chinese with English abstract)

    Google Scholar 

  • Sokal R R, Rohlf F J. 1969. Single classification analysis of variance. Biometry. In: Emerson R, Kennedy D, Park R eds. Principles and Practice of Statistics in Biological Research, WH Freeman, San Francisco. p.204–249.

    Google Scholar 

  • Taylor W R. 1977. Marine Algae of the Te Vega 1965 Expedition in the Western Pacific Ocean. The Smithsonian Institution, Philippines. p.9.

    Google Scholar 

  • Theil M, Westphalen G, Collings G, Cheshire A. 2007. Caulerpa taxifolia responses to hyposalinity stress. Aquatic Botany, 97 (2007): 221–228.

    Article  Google Scholar 

  • Titlyanov E A, Titlyanova T V, Pham V H. 2012. Stocks and the use of economic marine macrophytes of Vietnam. Russian J. Mar. Biol., 38(4): 285–298.

    Article  Google Scholar 

  • Wang P Y. 2011. Effects of salinity and light intensity on the growth of Caulerpa lentillifera. Modern Agricultural Science and Technology, 2011(24): 131–132.

    Google Scholar 

  • West E J, West R J. 2007. Growth and survival of the invasive alga, Caulerpa taxifolia, in different salinities and temperatures: implications for coastal lake management. Hydrobiologia, 577(1): 87–94.

    Article  Google Scholar 

  • Xia J R, Li Y J, Zou D H. 2004. Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany, 80(2): 129–137.

    Article  Google Scholar 

  • Xu Y J, Qian L M, Wang Y S. 2006. Effects on nitrogen nutrients on growht rate and pigment compositions of Gracilaria lemaneiformis. Journal of Oceanography in Taiwan Strait, 25(2): 222–228. (in Chinese with English abstract)

    Google Scholar 

  • Yin C L, Liang Y, Feng L X, Cao C H. 2007. Effects of different nitrogen concentrations on the chlorophyll fluorescence and growth of Dunaliella salina and Chaetoceros gracilis. Transactions of Oceanology and Limnology, 2007(1): 101–110. (in Chinese with English abstract)

    Google Scholar 

  • Zemke-White W L, Ohno M. 1999. World seaweed utilization: an end-of-century summary. J. Appl. Phycol., 11: 369–376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delin Duan  (段德麟).

Additional information

Supported by the Technology Program of Basic Research of Qingdao (No. 12-1-4-8-(2)-jch)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Yao, J., Sun, Z. et al. Effects of salinity and nutrients on the growth and chlorophyll fluorescence of Caulerpa lentillifera . Chin. J. Ocean. Limnol. 33, 410–418 (2015). https://doi.org/10.1007/s00343-015-4105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4105-y

Keyword

Navigation