Skip to main content
Log in

Peptidomic analysis of Chinese shrimp (Fenneropenaeus chinensis) hemolymph by magnetic bead-based MALDI-TOF MS

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Peptides in shrimp hemolymph play an important role in the innate immune response. Analysis of hemolymph will help to detect and identify potential novel biomarkers of microbial infection. We used magnetic bead-based purification (ClinProt system) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) to characterize shrimp hemolymph peptides. Shrimp serum and plasma were used as the source of samples for comparative analysis, and it was found that serum was more suitable for shrimp hemolymph peptidomic analysis. To screen potential specific biomarkers in serum of immune-challenged shrimps, we applied magnetic bead-based MALDI-TOF MS to serum samples from 10 immune-challenged and 10 healthy shrimps. The spectra were analyzed using FlexAnalysis 3.0 and ClinProTools 2.1 software. Thirteen peptide peaks significantly different between the two groups were selected as candidate biomarkers of lipopolysaccharide (LPS)-infection. The diagnostic model established by genetic algorithm using five of these peaks was able to discriminate LPS-challenged shrimps from healthy control shrimps with a sensitivity of 90% and a specificity of 100%. Our approach in MALDITOF MS-based peptidomics is a powerful tool for screening bioactive peptides or biomarkers derived from hemolymph, and will help to enable a better understanding of the innate immune response of shrimps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht W. 2005. Clinprot, an expandable platform for biomarker discovery. Molecular and Cellular Proteomics, 4(8): S387–S387.

    Google Scholar 

  • Antony S P, Singh I S B, Philip R. 2010. Molecular characterization of a crustin-like, putative antimicrobial peptide, Fi-crustin, from the Indian white shrimp, Fenneropenaeus indicus. Fish and Shellfish Immunology, 28(1): 216–220.

    Article  Google Scholar 

  • Baumann S, Ceglarek U, Fiedler G M, Lembcke J, Leichtle A, Thiery J. 2005. Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry, 51(6): 973–980.

    Article  Google Scholar 

  • Bosso N, Chinello C, Picozzi S C M, Gianazza E, Mainini V, Galbusera C, Raimondo F, Perego R, Casellato S, Rocco F, Ferrero S, Bosari S, Mocarelli P, Kienle M G, Magni F. 2008. Human urine biomarkers of renal cell carcinoma evaluated by ClinProt. Proteomics Clinical Applications, 2(7–8): 1 036–1 046.

    Google Scholar 

  • Cheng W, Tsai I H, Huang C J, Chiang P C, Cheng C H, Yeh M S. 2008. Cloning and characterization of hemolymph clottable proteins of kuruma prawn (Marsupenaeus japonicus) and white shrimp (Litopenaeus vannamei). Developmental and Comparative Immunology, 32(3): 265–274.

    Article  Google Scholar 

  • Chiou T T, Wu J L, Chen T T, Lu J K. 2005. Molecular cloning and characterization of cDNA of penaeidin-like antimicrobial peptide from tiger shrimp (Penaeus monodon). Marine Biotechnology, 7(2): 119–127.

    Article  Google Scholar 

  • Cuthbertson B J, Deterding L J, Williams J G, Tomer K B, Etienne K, Blackshear P J, Bullesbach E E, Grosse P S. 2008. Diversity in penaeidin antimicrobial peptide form and function. Developmental and Comparative Immunology, 32(3): 167–181.

    Article  Google Scholar 

  • FigueroaSoto C G, delaBarca A M C, VazquezMoreno L, HigueraCiapara I, YepizPlascencia G. 1997. Purification of hemocyanin from white shrimp (Penaeus vannamei Boone) by immobilized metal affinity chromatography. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 117(2): 203–208.

    Article  Google Scholar 

  • Flegel T W, Sritunyalucksana K. 2011. Shrimp molecular responses to viral pathogens. Marine Biotechnology, 13(4): 587–607.

    Article  Google Scholar 

  • Hauton C, Brockton V, Smith V J. 2007. Changes in immune gene expression and resistance to bacterial infection in lobster (Homarus gammarus) post-larval stage VI following acute or chronic exposure to immune stimulating compounds. Molecular Immunology, 44(4): 443–450.

    Article  Google Scholar 

  • Huang B X, Zhang J Q, Xiang J H. 2008. Purification and primary identification of haemocyanin in the Chinese shrimp, Fenneropenaeus chinensis (Decapoda, Penaeoidea). Crustaceana, 81(7): 769–780.

    Article  Google Scholar 

  • Kang C, Wang J, Zhao X, Yang X, Shao H, Xiang J. 2004. Molecular cloning and expression analysis of Chpenaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish and Shellfish Immunology, 16(4): 513–525.

    Article  Google Scholar 

  • Levy F, Bulet P, Ehret-Sabatier L. 2004. Proteomic analysis of the systemic immune response of Drosophila. Molecular and Cellular Proteomics, 3(2): 156–166.

    Article  Google Scholar 

  • Liu F S, Liu Y C, Li F H, Dong B, Xiang J H. 2005. Molecular cloning and expression profile of putative antilipopolysaccharide factor in Chinese shrimp (Fenneropenaeus chinensis). Marine Biotechnology, 7(6): 600–608.

    Article  Google Scholar 

  • Magni F, Van Der Burgt Y E M, Chinello C, Mainini V, Gianazza E, Squeo V, Deelder A M, Kienle M G. 2010. Biomarkers discovery by peptide and protein profiling in biological fluids based on functionalized magnetic beads purification and mass spectrometry. Blood Transfusion, 8: S92–S97.

    Google Scholar 

  • Perazzolo L M, Lorenzini D M, Daffre S, Barracco M A. 2005. Purification and partial characterization of the plasma clotting protein from the pink shrimp Farfantepenaeus paulensis. Comparative Biochemistry and Physiology B-Biochemistry and Molecular Biology, 142(3): 302–307.

    Article  Google Scholar 

  • Qiu F, Liu H Y, Zhang X J, Tian Y P. 2009. Optimization of magnetic beads for MALDI-TOF MS analysis. Frontiers in Bioscience, 14: 3 712–3 723.

    Google Scholar 

  • Robalino J, Almeida J S, McKillen D, Colglazier J, Trent H F, Chen Y A, Peck M E T, Browdy C L, Chapman R W, Warr G W, Gross P S. 2007. Insights into the immune transcriptome of the shrimp Litopenaeus vannamei: tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiological Genomics, 29(1): 44–56.

    Article  Google Scholar 

  • Rowley A F, Powell A. 2007. Invertebrate immune systemsspecific, quasi-specific, or nonspecific? Journal of Immunology, 179(11): 7 209–7 214.

    Google Scholar 

  • Schuerenbeg M, Luebbert C, Eickhoff H, Kalkum M, Lehrach H, Nordhoff E. 2000. Prestructured MALDI-MS sample supports. Analytical Chemistry, 72(15): 3 436–3 442.

    Google Scholar 

  • Somboonwiwat K, Chaikeeratisak V, Wang H C, Lo C F, Tassanakajon A. 2010. Proteomic analysis of differentially expressed proteins in Penaeus monodon hemocytes after Vibrio harveyi infection. Proteome Science, 8: 39.

    Article  Google Scholar 

  • Sun J, Wang L, Wang B, Guo Z, Liu M, Jiang K, Luo Z. 2007. Purification and characterisation of a natural lectin from the serum of the shrimp Litopenaeus vannamei. Fish and Shellfish Immunology, 23(2): 292–299.

    Article  Google Scholar 

  • Sun J, Wang L, Wang B, Guo Z, Liu M, Jiang K, Tao R, Zhang G. 2008. Purification and characterization of a natural lectin from the plasma of the shrimp Fenneropenaeus chinensis. Fish and Shellfish Immunology, 25(3): 290–297.

    Article  Google Scholar 

  • Timms J F, Arslan-Low E, Gentry-Maharaj A, Luo Z, T’Jampens D, Podust V N, Ford J, Fung E T, Gammerman A, Jacobs I, Menon U. 2007. Preanalytic influence of sample handling on SELDI-TOF serum protein profiles. Clinical Chemistry, 53(4): 645–656.

    Article  Google Scholar 

  • Uttenweiler-Joseph S, Moniatte M, Lagueux M, Van Dorsselaer A, Hoffmann J A, Bulet P. 1998. Differential display of peptides induced during the immune response of Drosophila: A matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proceedings of the National Academy of Sciences of the United States of America, 95(19): 11 342–11 347.

    Article  Google Scholar 

  • Vierstraete E, Verleyen P, De Loof A, Schoofs L. 2005. Differential proteomics for studying Drosophila immunity. Trends in Comparative Endocrinology and Neurobiology, 1040: 504–507.

    Google Scholar 

  • West-Norager M, Kelstrup C D, Schou C, Hogdall E V, Hogdall C K, Heegaard N H H. 2007. Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 847(1): 30–37.

    Article  Google Scholar 

  • Yao C, Wu C, Xiang J, Dong B. 2005. Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fenneropenaeus chinensis. Fish and Shellfish Immunology, 19(4): 317–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang  (王雷).

Additional information

Supported by the National Natural Science Foundation of China (No. 30600458)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Liu, M., Jiang, K. et al. Peptidomic analysis of Chinese shrimp (Fenneropenaeus chinensis) hemolymph by magnetic bead-based MALDI-TOF MS. Chin. J. Ocean. Limnol. 31, 407–415 (2013). https://doi.org/10.1007/s00343-013-2076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2076-4

Keyword

Navigation