Skip to main content
Log in

Estimates of global M 2 internal tide energy fluxes using TOPEX/POSEIDON altimeter data

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

TOPEX/POSEIDON altimeter data from October 1992 to June 2002 are used to calculate the global barotropic M 2 tidal currents using long-term tidal harmonic analysis. The tides calculated agree well with ADCP data obtained from the South China Sea (SCS). The maximum tide velocities along the semi-major axis and semi-minor axis can be computed from the tidal ellipse. The global distribution of M 2 internal tide vertical energy flux from the sea bottom is calculated based on a linear internal wave generation model. The global vertical energy flux of M 2 internal tide is 0.96 TW, with 0.36 TW in the Pacific, 0.31 TW in the Atlantic and 0.29 TW in the Indian Ocean, obtained in this study. The total horizontal energy flux of M 2 internal tide radiating into the open ocean from the lateral boundaries is 0.13 TW, with 0.06 TW in the Pacific, 0.04TW in the Atlantic, and 0.03 TW in the Indian Ocean. The result shows that the principal lunar semi-diurnal tide M 2 provides enough energy to maintain the large-scale thermohaline circulation of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althaus, E. K. and T. B. Sanford, 2003. Internal tide radiation from Mendocino Escarpment, J. Phys. Oceanogr. 33: 1 510–1 527.

    Article  Google Scholar 

  • Bell, T. H., 1975a. Lee waves in stratified flow with simple harmonic time dependence. J. Fluid Mech. 67: 705–722.

    Article  Google Scholar 

  • Bell, T. H., 1975b. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80: 320–327.

    Article  Google Scholar 

  • Egbert, G. D. and R. D. Ray, 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405: 775–778.

    Article  Google Scholar 

  • Gregg, M. C., 1987. Diapycnal mixing in the thermalcline: A review. J. Geophys. Res. 92: 5 249–5 286.

    Article  Google Scholar 

  • Laurent, St. L. and C. Garrett, 2002. The role of internal tides in mixing the deep ocean. Journal of Physical Oceanography 32: 2 882–2 889.

    Google Scholar 

  • Ledwell, J. R., A. J., Watson and C. S., Law, 1998. Mixing of a tracer in the pycnocline. J. Geophys. Res. 103: 21 499–21 529.

    Article  Google Scholar 

  • Lee, C. M., E. Kunze, T. B. Sanford et al., 2006. Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr. 36: 1 165–1 183.

    Article  Google Scholar 

  • Llewellyn Smith, S. G. and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr. 32: 1 554–1 566.

    Article  Google Scholar 

  • Martin, J. P., D. L. Rudnick and R. Pinkel, 2006. Spatially-broad observations of internal waves in the uppr ocean at the Hawaiian Ridge. J. Phys. Oceanogr. 36: 1 085–1 103.

    Google Scholar 

  • Munk, W. and C. Wunsch, 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I 45: 1 977–2 010.

    Google Scholar 

  • Nash, J. D., E. Kunze, C. M. Lee et al., 2006. Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr. 36: 1 123–1 135.

    Article  Google Scholar 

  • Niwa, Y. and T. Hibiya, 2001. Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res. 106: 22 441–22 449.

    Article  Google Scholar 

  • Nycander, J., 2005. Generation of internal waves in the deep ocean by tides. J. Geophys. Res. 110: C10028, doi:10.1029/2004JC002487.

    Article  Google Scholar 

  • Polzin, K. L., J. M. Toole, J. R. Ledwell et al., 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science 276: 93–96.

    Article  Google Scholar 

  • Ray, R. D., 2001. Inversion of oceanic tidal currents from measured elevations. Journal of Marine Systems 28: 1–18.

    Article  Google Scholar 

  • Rudnick, D. L., T. J. Boyd, R. E. Brainard et al., 2003. From tides to mixing along the Hawaiian Ridge. Science 301: 355–357.

    Article  Google Scholar 

  • Simmons, H. L., R. W. Hallberg and B. K. Arbic, 2004. Internal wave generation in a global baroclinic tidal model. Deep-Sea Res. II 51:3 043–3 068.

    Article  Google Scholar 

  • Tian, J. W., L. Zhou, X. Q. Zhang et al., 2003. Estimates of M 2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON Altimeter data. Geophys. Res. Lett. 30(17): 1889, doi:10.1029/2003GL018008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Zhang  (张艳伟).

Additional information

Supported by the National Basic Research Program of China (973 Program, No. 2005CB422303), the International Cooperation Program (No. 2004DFB02700), and the National Natural Science Foundation of China (No. 40552002). The TOPEX/POSEIDON data are provided by Physical Oceanography Distributed Active Archive Center (PO DACC)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liang, X., Tian, J. et al. Estimates of global M 2 internal tide energy fluxes using TOPEX/POSEIDON altimeter data. Chin. J. Ocean. Limnol. 27, 129–134 (2009). https://doi.org/10.1007/s00343-009-0129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-0129-5

Keyword

Navigation