Skip to main content

Advertisement

Log in

Characterization of laser-induced emission of high-purity TiO\(_2\) nanoparticles: feasibility of laser-induced incandescence

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The development of laser-induced incandescence (LII) approach for characterizing the production of high-purity non-carbonaceous metal oxides produced in flame synthesis systems is in progress. This work aims to prove the feasibility of LII measurement for titanium dioxide (TiO\(_2\)). In previous works, laser-induced emission (LIE) was investigated for flame-synthetized TiO\(_2\) particles. However, the presence of carbon materials was detected. As this calls into question the nature of the signal, we consider in this work LIE of high-purity engineered TiO\(_2\) nanoparticles to circumvent the carbon issue. Specifically, we investigate the spectral and temporal laser-induced emissions of pure TiO\(_2\) nanoparticles dispersed in a non-reactive environment. In parallel, LIE from carbon black is examined to validate the strategy and highlight differences between carbon black and TiO\(_2\). The TiO\(_2\) results indicate that depending on the laser fluence, different prompt interferences appear. The literature suggests that these non-thermal emissions are likely to be from fluorescence or phase-selective laser-induced breakdown spectroscopy, both characterized by a short lifetime. To avoid these parasitic signals, measurement acquisition time is delayed. A spectral red-shift is observed with time as a result of decreasing particle temperature. This proves the LII nature of delayed emission from pure TiO\(_2\), which is confirmed by the LII-like nature of the temporal signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Assuming \(d_{\text {p}}(t)\) to be constant means that sublimation is negligible during the duration of the LII process.

References

  1. F. Meierhofer, U. Fritsching, Synthesis of metal oxide nanoparticles in flame sprays: review on process technology, modeling, and diagnostics. Energy & Fuels 35(7), 5495–5537 (2021)

    Article  Google Scholar 

  2. H.G. Völz, J. Kischkewitz, P. Woditsch, A. Westerhaus, W.-D. Griebler, M. De Liedekerke, G. Buxbaum, H. Printzen, M. Mansmann, D. Räde et al., Pigments, inorganic. Ullmann’s Encyclopedia of Industrial Chemistry (2000)

  3. S. Zahmatkesh, M. Hajiaghaei-Keshteli, A. Bokhari, S. Sundaramurthy, B. Panneerselvam, Y. Rezakhani, Wastewater treatment with nanomaterials for the future: A state-of-the-art review. Environmental Research, 114652 (2022)

  4. X. Hou, K. Aitola, P.D. Lund, TiO\(_{2}\) nanotubes for dye-sensitized solar cells-a review. Energy Science & Engineering 9(7), 921–937 (2021)

    Article  Google Scholar 

  5. P. Roth, Particle synthesis in flames. Proceedings of the combustion institute 31(2), 1773–1788 (2007)

    Article  Google Scholar 

  6. S.E. Pratsinis, Flame aerosol synthesis of ceramic powders. Progress in Energy and Combustion Science 24(3), 197–220 (1998)

    Article  Google Scholar 

  7. M.Y. Manuputty, C.S. Lindberg, J.A. Dreyer, J. Akroyd, J. Edwards, M. Kraft, Understanding the anatase-rutile stability in flame-made TiO\(_{2}\). Combustion and Flame 226, 347–361 (2021)

    Article  Google Scholar 

  8. Y. Ren, K. Ran, S. Kruse, J. Mayer, H. Pitsch, Flame synthesis of carbon metal-oxide nanocomposites in a counterflow burner. Proceedings of the Combustion Institute 38(1), 1269–1277 (2021)

    Article  Google Scholar 

  9. F. Cignoli, C. Bellomunno, S. Maffi, G. Zizak, Laser-induced incandescence of titania nanoparticles synthesized in a flame. Applied Physics B 96(4), 593–599 (2009)

    Article  Google Scholar 

  10. N.K. Memon, D.H. Anjum, S.H. Chung, Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles. Combustion and flame 160(9), 1848–1856 (2013)

    Article  Google Scholar 

  11. C. Russo, B. Apicella, A. Tregrossi, A. Ciajolo, K.C. Le, S. Török, P.-E. Bengtsson, Optical band gap analysis of soot and organic carbon in premixed ethylene flames: Comparison of in-situ and ex-situ absorption measurements. Carbon 158, 89–96 (2020)

    Article  Google Scholar 

  12. T.A. Sipkens, J. Menser, T. Dreier, C. Schulz, G.J. Smallwood, K.J. Daun, Laser-induced incandescence for non-soot nanoparticles: recent trends and current challenges. Applied Physics B 128(4), 1–31 (2022)

    Article  Google Scholar 

  13. H.A. Michelsen, Laser-induced incandescence of flame-generated soot on a picosecond time scale. Applied Physics B 83(3), 443–448 (2006)

    Article  Google Scholar 

  14. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials and Solar Cells 90(12), 1773–1787 (2006)

    Article  Google Scholar 

  15. N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO\(_{2}\) particles: size quantization versus direct transitions in this indirect semiconductor? The journal of Physical Chemistry 99(45), 16646–16654 (1995)

    Article  Google Scholar 

  16. C.C. Mercado, F.J. Knorr, J.L. McHale, S.M. Usmani, A.S. Ichimura, L.V. Saraf, Location of hole and electron traps on nanocrystalline anatase TiO\(_{2}\). The Journal of Physical Chemistry C 116(19), 10796–10804 (2012)

    Article  Google Scholar 

  17. K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, Time-resolved photoluminescence of particulate TiO\(_{2}\) photocatalysts suspended in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry 132(1–2), 99–104 (2000)

    Article  Google Scholar 

  18. J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, Photoluminescence characteristics of TiO\(_{2}\) and their relationship to the photoassisted reaction of water/methanol mixture. The journal of physical chemistry C 111(2), 693–699 (2007)

    Article  Google Scholar 

  19. D.K. Pallotti, L. Passoni, P. Maddalena, F. Di Fonzo, S. Lettieri, Photoluminescence mechanisms in anatase and rutile TiO\(_{2}\). The Journal of Physical Chemistry C 121(16), 9011–9021 (2017)

    Article  Google Scholar 

  20. J. Zhang, X. Chen, Y. Shen, Y. Li, Z. Hu, J. Chu, Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films. Physical Chemistry Chemical Physics 13(28), 13096–13105 (2011)

    Article  Google Scholar 

  21. P.B. Nair, V. Justinvictor, G.P. Daniel, K. Joy, K.J. Raju, D.D. Kumar, P. Thomas, Optical parameters induced by phase transformation in rf magnetron sputtered TiO\(_{2}\) nanostructured thin films. Progress in Natural Science: Materials International 24(3), 218–225 (2014)

    Article  Google Scholar 

  22. Y. Zhang, S. Li, Y. Ren, Q. Yao, C.K. Law, Two-dimensional imaging of gas-to-particle transition in flames by laser-induced nanoplasmas. Applied Physics Letters 104(2), 023115 (2014)

    Article  ADS  Google Scholar 

  23. Y. Zhang, S. Li, Y. Ren, Q. Yao, D.T. Stephen, A new diagnostic for volume fraction measurement of metal-oxide nanoparticles in flames using phase-selective laser-induced breakdown spectroscopy. Proceedings of the Combustion Institute 35(3), 3681–3688 (2015)

    Article  Google Scholar 

  24. Y. Ren, J. Wei, S. Li, In-situ laser diagnostic of nanoparticle formation and transport behavior in flame aerosol deposition. Proceedings of the Combustion Institute 37(1), 935–942 (2019)

    Article  Google Scholar 

  25. Y. Ren, Y. Zhang, S. Li, C.K. Law, Doping mechanism of vanadia/titania nanoparticles in flame synthesis by a novel optical spectroscopy technique. Proceedings of the Combustion Institute 35(2), 2283–2289 (2015)

    Article  Google Scholar 

  26. Y. Ren, Y. Zhang, S. Li, Simultaneous single-shot two-dimensional imaging of nanoparticles and radicals in turbulent reactive flows. Physical Review Applied 13(4), 044002 (2020)

    Article  ADS  Google Scholar 

  27. Y. Zhang, G. Xiong, S. Li, Z. Dong, S.G. Buckley, D.T. Stephen, Novel low-intensity phase-selective laser-induced breakdown spectroscopy of TiO\(_{2}\) nanoparticle aerosols during flame synthesis. Combustion and flame 160(3), 725–733 (2013)

    Article  Google Scholar 

  28. G. Xiong, S. Li, D.T. Stephen, Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols. Spectrochimica Acta Part B: Atomic Spectroscopy 140, 13–21 (2018)

    Article  ADS  Google Scholar 

  29. A.C. Eckbreth, Effects of laser-modulated particulate incandescence on raman scattering diagnostics. Journal of Applied Physics 48(11), 4473–4479 (1977)

    Article  ADS  Google Scholar 

  30. S. Will, S. Schraml, A. Leipertz, Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. Optics letters 20(22), 2342–2344 (1995)

    Article  ADS  Google Scholar 

  31. L.A. Melton, Soot diagnostics based on laser heating. Applied optics 23(13), 2201–2208 (1984)

    Article  ADS  Google Scholar 

  32. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Comparison of lii and tem sizing during synthesis of iron particle chains. Proceedings of the Combustion Institute 30(1), 1689–1697 (2005)

    Article  Google Scholar 

  33. K. Daun, J. Menser, R. Mansmann, S.T. Moghaddam, T. Dreier, C. Schulz, Spectroscopic models for laser-heated silicon and copper nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer 197, 3–11 (2017)

    Article  ADS  Google Scholar 

  34. R.L. Vander Wal, T.M. Ticich, J.R. West, Laser-induced incandescence applied to metal nanostructures. Applied optics 38(27), 5867–5879 (1999)

    Article  ADS  Google Scholar 

  35. I. Altman, D. Lee, J. Chung, J. Song, M. Choi, Light absorption of silica nanoparticles. Physical Review B 63(16), 161402 (2001)

    Article  ADS  Google Scholar 

  36. R. Weeks, W. Duley, Aerosol-particle sizes from light emission during excitation by tea CO\(_{2}\) laser pulses. Journal of Applied physics 45(10), 4661–4662 (1974)

    Article  ADS  Google Scholar 

  37. B. Tribalet, A. Faccinetto, T. Dreier, C. Schultz, Evaluation of particle sizes of iron-oxide nano-particles in a low-pressure flame-synthesis reactor by simultaneous application of tire-lii and pms, in 5th Workshop on Laser-induced Incandescence (2012)

  38. A. Eremin, E. Gurentsov, E.Y. Mikheyeva, S. Musikhin, Binary iron–carbon nanoparticle synthesis in photolysis of Fe(CO)\(_{5}\) with methane and acetylene, in Journal of Physics: Conference Series, vol. 774, p. 012127 (2016). IOP Publishing

  39. A. Eremin, E. Gurentsov, S. Musikhin, Synthesis of binary iron-carbon nanoparticles by UV laser photolysis of Fe(CO)\(_{5}\) with various hydrocarbons. Materials Research Express 3(10), 105041 (2016)

    Article  ADS  Google Scholar 

  40. S. Maffi, F. Cignoli, C. Bellomunno, S. De Iuliis, G. Zizak, Spectral effects in laser induced incandescence application to flame-made titania nanoparticles. Spectrochimica Acta Part B: Atomic Spectroscopy 63(2), 202–209 (2008)

    Article  ADS  Google Scholar 

  41. G. De Falco, M. Commodo, P. Minutolo, A. D’Anna, Flame aerosol synthesis and thermophoretic deposition of superhydrophilic TiO\(_{2}\) nanoparticle coatings. Chemical Engineering Transactions 73, 37–42 (2019)

    Google Scholar 

  42. S. De Iuliis, R. Dondè, I. Altman, Light emission of flame-generated TiO\(_{2}\) nanoparticles: Effect of ir laser irradiation. Journal of Quantitative Spectroscopy and Radiative Transfer 258, 107353 (2021)

    Article  Google Scholar 

  43. H.K. Kammler, S.E. Pratsinis, Carbon-coated titania nanostructured particles: Continuous, one-step flame-synthesis. Journal of materials research 18(11), 2670–2676 (2003)

    Article  ADS  Google Scholar 

  44. M. Darmenkulova, M. Aitzhanov, S.A. Zhumatova, M. Ibraimov, Y. Sagidolda, Change of optical properties of carbon-doped silicon nanostructures under the influence of a pulsed electron beam. Journal of Nanotechnology 2022 (2022)

  45. F. Liu, J. Yon, A. Fuentes, P. Lobo, G.J. Smallwood, J.C. Corbin, Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Science and Technology 54(1), 33–51 (2020)

    Article  ADS  Google Scholar 

  46. T.C. Williams, C.R. Shaddix, K.A. Jensen, J.M. Suo-Anttila, Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames. International Journal of Heat and Mass Transfer 50(7–8), 1616–1630 (2007)

    Article  Google Scholar 

  47. Ü.Ö. Köylü, G.M. Faeth, Spectral Extinction Coefficients of Soot Aggregates From Turbulent Diffusion Flames. Journal of Heat Transfer 118(2), 415–421 (1996)

    Article  Google Scholar 

  48. H.-C. Chang, T. Charalampopoulos, Determination of the wavelength dependence of refractive indices of flame soot. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 430(1880), 577–591 (1990)

    ADS  Google Scholar 

  49. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Determination of the soot absorption function and thermal accommodation coefficient using low-fluence lii in a laminar coflow ethylene diffusion flame. Combustion and flame 136(1–2), 180–190 (2004)

    Article  Google Scholar 

  50. S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph, T.A. König, Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS applied materials & interfaces 11(14), 13752–13760 (2019)

    Article  Google Scholar 

  51. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, A. Tünnermann, Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater. 4(11), 1780–1786 (2016)

    Article  Google Scholar 

  52. H.-Y. Liu, Y.-L. Hsu, H.-Y. Su, R.-C. Huang, F.-Y. Hou, G.-C. Tu, W.-H. Liu, A comparative study of amorphous, anatase, rutile, and mixed phase TiO\(_2\) films by mist chemical vapor deposition and ultraviolet photodetectors applications. IEEE Sens. J. 18(10), 4022–4029 (2018)

    Article  ADS  Google Scholar 

  53. G. Jellison Jr., L. Boatner, J. Budai, B.-S. Jeong, D. Norton, Spectroscopic ellipsometry of thin film and bulk anatase (TiO\(_{2}\)). J. Appl. Phys. 93(12), 9537–9541 (2003)

    Article  ADS  Google Scholar 

  54. S. De Iuliis, F. Migliorini, R. Dondè, Laser-induced emission of tio 2 nanoparticles in flame spray synthesis. Appl. Phys. B 125(11), 1–11 (2019)

    Article  Google Scholar 

  55. H.A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118(15), 7012–7045 (2003)

    Article  ADS  Google Scholar 

  56. F. Goulay, P.E. Schrader, L. Nemes, M.A. Dansson, H.A. Michelsen, Photochemical interferences for laser-induced incandescence of flame-generated soot. Proc. Combust. Inst. 32(1), 963–970 (2009)

    Article  Google Scholar 

  57. T. Posch, F. Kerschbaum, D. Fabian, H. Mutschke, J. Dorschner, A. Tamanai, T. Henning, Infrared properties of solid titanium oxides: exploring potential primary dust condensates. Astrophys. J. Suppl. Ser. 149(2), 437 (2003)

    Article  ADS  Google Scholar 

  58. M.J. O’Neil, A. Smith, P.E. Heckelman, S. Budavari, The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station (Merck and co. Inc, New Jersey, 2001), p.4342

    Google Scholar 

  59. J.C. Miller, Optical properties of liquid metals at high temperatures. Philos. Mag. 20(168), 1115–1132 (1969)

    Article  ADS  Google Scholar 

  60. D.L. Parry, M.Q. Brewster, Optical constants of Al\(_{2}\)O\(_{3}\) smoke in propellant flames. J. Thermophys. Heat Transf. 5(2), 142–149 (1991)

    Article  Google Scholar 

  61. F. Goulay, L. Nemes, P.E. Schrader, H.A. Michelsen, Spontaneous emission from C\(_{2}\) (d\(^{3}{\Pi _{g}}\)) and C\(_{3}\) (A \(^{1}{\Pi _{u}}\)) during laser irradiation of soot particles. Mol. Phys. 108(7–9), 1013–1025 (2010)

    Article  ADS  Google Scholar 

  62. Z. Gao, L. Han, J. Li, Investigation of laser induced air breakdown thresholds at 1064, 532, 355, 266 and 248nm, in Pacific Rim Laser Damage 2019: Optical Materials for High-Power Lasers, vol. 11063, pp. 23–27 (2019). SPIE

  63. G. Xiong, S. Li, Y. Zhang, S.G. Buckley, D.T. Stephen, Phase-selective laser-induced breakdown spectroscopy of metal-oxide nanoparticle aerosols with secondary resonant excitation during flame synthesis. J. Anal. At. Spectrom. 31(2), 482–491 (2016)

    Article  Google Scholar 

  64. Y. Ren, S. Li, Y. Zhang, D.T. Stephen, M.B. Long, Absorption-ablation-excitation mechanism of laser-cluster interactions in a nanoaerosol system. Phys. Rev. Lett. 114(9), 093401 (2015)

    Article  ADS  Google Scholar 

  65. R.F. LeBouf, A.L. Miller, C. Stipe, J. Brown, N. Murphy, A.B. Stefaniak, Comparison of field portable measurements of ultrafine TiO\(_2\): X-ray fluorescence, laser-induced breakdown spectroscopy, and fourier-transform infrared spectroscopy. Environ. Sci. Process. Imp. 15(6), 1191–1198 (2013)

    Article  Google Scholar 

  66. J. Menneveux, F. Wang, S. Lu, X. Bai, V. Motto-Ros, N. Gilon, Y. Chen, J. Yu, Direct determination of ti content in sunscreens with laser-induced breakdown spectroscopy: Line selection method for high TiO\(_{2}\) nanoparticle concentration. Spectrochim. Acta Part B At. Spectrosc. 109, 9–15 (2015)

    Article  ADS  Google Scholar 

  67. R. Noll, Laser-Induced Breakdown Spectroscopy (Springer, Heidelberg, 2012)

    Book  Google Scholar 

  68. S. Bejaoui, S. Batut, E. Therssen, N. Lamoureux, P. Desgroux, F. Liu, Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame. Appl. Phys. B 118(3), 449–469 (2015)

    Article  ADS  Google Scholar 

  69. Y.J. Lee, N.W. Song, S.K. Kim, Photoluminescence of C\(_{60}\) and its photofragments in the gas phase. J. Phys. Chem. A 106(23), 5582–5590 (2002)

    Article  Google Scholar 

  70. E.A. Rohlfing, Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source. J. Chem. Phys. 89(10), 6103–6112 (1988)

    Article  ADS  Google Scholar 

  71. R.L. Vander Wal, G.M. Berger, T.M. Ticich, P.D. Patel, Application of laser-induced incandescence to the detection of carbon nanotubes and carbon nanofibers. Appl. Opt. 41(27), 5678–5690 (2002)

    Article  ADS  Google Scholar 

  72. K.K. Paul, P. Giri, Role of surface plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@ TiO\(_{2}\) nanorods under visible light. J. Phys. Chem. C 121(36), 20016–20030 (2017)

    Article  Google Scholar 

  73. B. Santara, P. Giri, K. Imakita, M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO\(_{2}\) nanoribbons. Nanoscale 5(12), 5476–5488 (2013)

    Article  ADS  Google Scholar 

  74. L. Forss, M. Schubnell, Temperature dependence of the luminescence of TiO2 powder. Appl. Phys. B 56, 363–366 (1993)

    Article  ADS  Google Scholar 

  75. N.D. Abazović, M.I. Čomor, M.D. Dramićanin, D.J. Jovanović, S.P. Ahrenkiel, J.M. Nedeljković, Photoluminescence of anatase and rutile TiO\(_{2}\) particles. J. Phys. Chem. B 110(50), 25366–25370 (2006)

    Article  Google Scholar 

  76. Y. Lei, L. Zhang, Fabrication, characterization, and photoluminescence properties of highly ordered TiO\(_{2}\) nanowire arrays. J. Mater. Res. 16(4), 1138–1144 (2001)

    Article  ADS  Google Scholar 

  77. A. Kramida, Yu. Ralchenko, J. Reader, NIST ASD Team NIST Atomic Spectra Database (ver. 5.9), [Online]. Available: https://physics.nist.gov/asd [2022, June 2]. National Institute of Standards and Technology, Gaithersburg, MD (2021)

  78. L. De Haart, G. Blasse, The observation of exciton emission from rutile single crystals. J. Solid State Chem. France 61(1), 135–136 (1986)

    Article  ADS  Google Scholar 

  79. Y.C. Zhu, C.X. Ding, Investigation on the surface state of TiO\(_{2}\) ultrafine particles by luminescence. Journal of Solid State Chemistry 145(2), 711–715 (1999)

    Article  ADS  Google Scholar 

  80. F. Goulay, P.E. Schrader, X. López-Yglesias, H.A. Michelsen, A data set for validation of models of laser-induced incandescence from soot: temporal profiles of lii signal and particle temperature. Applied Physics B 112(3), 287–306 (2013)

    Article  Google Scholar 

  81. Carbon Black. CAS Common Chemistry. CAS, a Division of the American Chemical Society, (retrieved 2022-05-06) (CAS RN: 1333-86-4). https://commonchemistry.cas.org/detail?cas_rn=1333-86-4

  82. R. Weast et al., Crc handbook of chemistry and physics 69th ed (boca raton, fl: Chemical rubber) (1988)

  83. H. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boïarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann et al., Modeling laser-induced incandescence of soot: a summary and comparison of lii models. Appl. Phys. B 87(3), 503–521 (2007)

    Article  ADS  Google Scholar 

  84. H. Michelsen, C. Schulz, G. Smallwood, S. Will, Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received the European Research Council (ERC) support under the European Union’s Horizon 2020 research and innovation program (Grant agreement no. 757912). The authors thank Dr. G. E. (Jay) Jellison of the Oak Ridge National Lab and Dr. Han-Yin Liu at National Sun Yat-Sen University for providing data for the refractive index and extinction coefficient.

Author information

Authors and Affiliations

Authors

Contributions

JY built the experimental setup, performed the experiments, post-processed the experimental data, and prepared the figure. JY and CB designed the experimental setup. CB and BF defined the scientific strategy. C B, BF, and ND supervised the research. BF found the funding. JY wrote the first version of the manuscript. CB and BF extensively revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Christopher Betrancourt or Benedetta Franzelli.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1993 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Betrancourt, C., Darabiha, N. et al. Characterization of laser-induced emission of high-purity TiO\(_2\) nanoparticles: feasibility of laser-induced incandescence. Appl. Phys. B 129, 97 (2023). https://doi.org/10.1007/s00340-023-08038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08038-3

Navigation