Skip to main content
Log in

A theoretical study on the supercontinuum generation in a novel suspended liquid core photonic crystal fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We theoretically propose a novel liquid filled suspended core photonic crystal fiber as a new class of microstructure optical fiber for ultrabroad supercontinuum generation. We emphasize the advantage of liquid infiltration in enhancing the fiber nonlinearity. To further enhance the nonlinearity of the liquid-infiltrated fibers, we introduce a suspended liquid core photonic crystal fiber which significantly elevates the fiber nonlinearity through reduced effective area. A comparative study on the continuum generated in conventional microstructured optical fiber (without suspension effect) and the suspended core microstructured optical fiber is performed. A broad continuum is numerically demonstrated through the suspended core fiber, which is substantially broader than the fiber without suspension effect. Thus, we propose a new means to enhance the nonlinearity beyond the intrinsic material dependence. The underlined suspended liquid core photonic crystal fiber can be a new class of fibers for next generation of broadband laser sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Knight, Photonic crystal fibres. Nature 424, 847 (2003)

    ADS  Google Scholar 

  2. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547 (1996)

    ADS  Google Scholar 

  3. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, D.C. Allan, Single mode photonic band gap guidance of light in air. Science 285, 1537 (1999)

    Google Scholar 

  4. J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell, Photonic band gap guidance in optical fibers. Science 282, 1476 (1998)

    Google Scholar 

  5. R.V.J. Raja, K. Senthilnathan, K. Porsezian, K. Nakkeeran, Efficient pulse compression using tapered photonic crystal fiber at 850 nm. J. Quant. Electron. 46, 12 (2010)

    Google Scholar 

  6. J.M. Dudley, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135 (2006)

    ADS  Google Scholar 

  7. J.M. Dudley, J.R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  8. M. Chen, S.G. Yang, F.F. Yin, H.W. Chen, S.Z. Xie, Design of a new type high birefringence photonic crystal fiber. Optoelectron. Lett. 4, 19 (2008)

    ADS  Google Scholar 

  9. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961 (1997)

    ADS  Google Scholar 

  10. K.M. Ho, C.T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152 (1990)

    ADS  Google Scholar 

  11. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  12. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, L. Vincetti, Characterization of micro structured optical fibers for wideband dispersion compensation. J. Opt. Soc. Am. A 20, 1958 (2003)

    ADS  Google Scholar 

  13. F. Poli, A. Cucinotta, S. Selleri, A.H. Bouk, Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers. Photon. Technol. Lett. 16, 1065 (2004)

    ADS  Google Scholar 

  14. S.E. Kim, B.H. Kim, C.G. Lee, S. Lee, K. Oh, C.-S. Kee, Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Opt. Express 20, 1385 (2012)

    ADS  Google Scholar 

  15. K. Saitoh, M. Koshiba, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11, 843 (2003)

    ADS  Google Scholar 

  16. B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-F. Li, L. Chai, C.-Y. Wang, W. Tong, J. Luo, A.A. Voronin, A.M. Zheltikov, Stabilized soliton self-frequency shift and 0.1-PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core. Opt. Express 16, 14987 (2008)

    ADS  Google Scholar 

  17. B. Kibler, P.A. Lacourt, F. Courvoisier, J.M. Dudley, Soliton spectral tunnelling in photonic crystal fibre with subwavelength core defect. Electron. Lett. 43, 967 (2007)

    Google Scholar 

  18. E.E. Serebryannikov, A.M. Zheltikov, Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis. J. Opt. Soc. Am. B 23, 1700 (2006)

    ADS  Google Scholar 

  19. A. Sharafali, K. Nithyanandan, K. Porsezian, Self-similar pulse compression by defective core photonic crystal fiber with cubic-quintic nonlinearities. Optik 178, 591 (2019)

    ADS  Google Scholar 

  20. J.H.V. Price, X. Feng, A.M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W.H. Loh, H.N. Rutt, D.J. Richardson, Supercontinuum generation in non-silica fibers. Opt. Fib. Techn. 18, 327 (2012)

    ADS  Google Scholar 

  21. Y. Wang, M. Yang, D.N. Wang, C.R. Liao, Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity. Photon. Technol. Lett. 23, 1520 (2011)

    ADS  Google Scholar 

  22. X. Zheng, Y. Liu, Z. Wang, T. Han, C. Wei, J. Chen, Transmission and temperature sensing charecteristics of a selectively liquid-filled photonic band gap fiber. Appl. Phys. Lett. 100, 141104 (2012)

    ADS  Google Scholar 

  23. Y. Huang, Y. Xu, A. Yariv, Fabrication of functional microstructured optical fibers through a slective-filling technique. Appl. Phys. Lett. 85, 5182 (2004)

    ADS  Google Scholar 

  24. R. Spittel, D. Hoh, S. Bruckner, A. Schwuchow, K. Schuster, J. Kobelke, H. Bartelt, Selective filling of metals into photonic crystal fibers. Proc. SPIE 7946 Photon. Phononic Propert. Eng. Nanostruct. 7946, 794602 (2011)

    Google Scholar 

  25. A. Sharafali, K. Nithyanandan, Ultra-broadband continuum generation in silica based defective core photonic crystal fiber. Optik 191, 121–131 (2019)

    ADS  Google Scholar 

  26. K. Porsezian, K. Nithyanandan, R.V.J. Raja, R. Ganapathy, A theoretical investigation of soliton induced supercontinuum generation in liquid core photonic crystal fiber and dual core optical fiber. Eur. Phys. J. Special Topics 222(3–4), 625–640 (2013)

    ADS  Google Scholar 

  27. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, Hybrid soliton dynamics in liquid-core fibres. Nat. Comm. 8, 1 (2017)

    Google Scholar 

  28. C.P. Yu, J.H. Liou, Selectively liquid-filled photonic crystal fibers for optical devices. Opt. Express 17, 8729 (2009)

    ADS  Google Scholar 

  29. C.P. Yu, J.H. Liou, S.S. Huang, H.C. Chang, Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Opt. Express 16, 4443 (2008)

    ADS  Google Scholar 

  30. M. Cordier, A. Orieux, R. Gabet, T. Harle, N. Dubreuil, E. Diamanti, P. Delaye , I. Zaquine, “Liquid filled photonic crystal fiber: a flexible tool for fibered photon-pair generation”, Quantum information and measurement (QIM), QW3C.5 (2017)

  31. S. K. Methaprian, N. Ayyanar, P. Mahalakshmi, M. Sumathi, D. Vigneswaran , M. S. M. Rajan, Design of temperature sensor using liquid filled photonic crystal fiber. IEEE Conference on recent advances in lightwave technology (CRALT), pp. 1–5 (2016)

  32. Y. E. Monfared , S. A. Ponomarenko, All-optical wavelength conversion using a liquid-filled photonic crystal fiber. Photonics North (PN), p. 1 (2017)

  33. D. Ghosh, S. Bose, S. Roy, S.K. Bhadra, Design and fabrication of microstructured optical fibers with optimized core suspension for enhanced supercontinuum generation. J. Lightwave Technol. 33, 4156 (2015)

    ADS  Google Scholar 

  34. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25 (2000)

    ADS  Google Scholar 

  35. A.M. Zheltikov, Let there be white light: supercontinuum generation by ultrashort laser pulses. Physics-Uspekhi 49, 605 (2006)

    ADS  Google Scholar 

  36. K. Nithyanandan, R.V.J. Raja, K. Porsezian, T. Uthayakumar, A colloquium on the influence of versatile class of saturable nonlinear responses in the instability induced supercontinuum generation. J. Opt. Fib. Technol. 19, 348 (2013)

    ADS  Google Scholar 

  37. K. Nithyanandan, R.V.J. Raja, K. Porsezian, Power play in the supercontinuum spectra of saturable nonlinear media. Laser Phys. 24, 045405 (2014)

    ADS  Google Scholar 

  38. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Man, P.S.J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Am. B 19, 2148 (2002)

    ADS  Google Scholar 

  39. G. Genty, S. Coen, J.M. Dudley, Fiber supercontinuum sources (Invited). J. Opt. Soc. Am. B 24, 1771 (2007)

    ADS  Google Scholar 

  40. J.M. Dudley, J.R. Taylor, Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 3, 85 (2009)

    ADS  Google Scholar 

  41. M. Nisoli, S.D. Silvetri, O. Svelto, R. Szipocs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522 (1997)

    ADS  Google Scholar 

  42. T. Udem, R. Holzwarth, T.W. Hansch, Optical frequency metrology. Nature 416, 233 (2002)

    ADS  Google Scholar 

  43. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler, Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber. Opt. Lett. 26, 608 (2001)

    ADS  Google Scholar 

  44. R.R. Alfano, The Supercontinuum Laser Source-Fundamental with Updated References, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  45. A. Demircan, U. Bandelow, Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation. Appl. Phys. B 86, 31 (2007)

    ADS  Google Scholar 

  46. F. Li, Q. Li, J. Yuan, P.K.A. Wai, Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression. Optic exp. 22, 27339 (2014)

    ADS  Google Scholar 

  47. T.J. Bridges, A.R. Chraplyvy, J.G. Bergman, R.M. Hart, Broadband infrared generation in liquid-bromine-core optical fibers. Opt. Lett. 7, 566 (1982)

    ADS  Google Scholar 

  48. R. Zhang, J. Teipel, H. Giessen, Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt. Exp. 14, 6800 (2006)

    ADS  Google Scholar 

  49. M. Vieweg, S. Pricking, T. Gissibl, Y.V. Kartashov, L. Torner, H. Giessen, Tunable ultrafast nonlinear optofluidic coupler. EPJ Web Conf. 41, 12010 (2013)

    Google Scholar 

  50. S. Pricking, H. Giessen, Generalized retarded response of nonlinear media and its influence on soliton dynamics. Opt. Exp. 19, 2895 (2011)

    ADS  Google Scholar 

  51. S. Guo, F. Wu, S. Albin, H. Tai, R.S. Rogowski, Loss and dispersion analysis of microstructured fibers by finite-difference method. Opt. Exp. 12, 3341 (2004)

    ADS  Google Scholar 

  52. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mat. Exp. 2, 1588 (2012)

    Google Scholar 

  53. G. Ghosh, M. Endo, T. Iwasaki, Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. J. Lightwave Technol. 12, 1338 (1994)

    ADS  Google Scholar 

  54. G. Farin, Curves and Surfaces for CAGD, 5th edn. (Academic Press, Cambridge, 2001)

    Google Scholar 

  55. J.M. Dudley, C. Flinot, D.J. Richardson, G. Milot, Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3, 597 (2007)

    Google Scholar 

  56. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, An experimental investigation of the nonlinear refractiveindex (\(n_2\)) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques. Chem. Phys. Lett. 369, 318 (2003)

    ADS  Google Scholar 

  57. G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Academic press, New York, 2013)

    MATH  Google Scholar 

  58. R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus, Raman response function of silica-core fibers. JOSA B 6, 1159 (1989)

    Google Scholar 

  59. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tnnermann, J. Limpert, M.A. Schmidt, Carbon chloride-core fibers for soliton mediated supercontinuum generation. Opt. Express 26, 3221 (2018)

    ADS  Google Scholar 

  60. K. Itoh, Y. Toda, R. Moria, M. Yamashita, Coherent optical control of molecular motion using polarized sequential pulses. Jpn. J. Appl. Phys. 43, 6448 (2004)

    ADS  Google Scholar 

  61. J.P. Gordon, Theory of the soliton self-frequency shift. Opt. Lett. 11, 662 (1986)

    ADS  Google Scholar 

  62. Y. Kodama, A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide. IEEE Photonics Technol. Lett. QE–23, 510 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nithyanandan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafali, A., Nithyanandan, K. A theoretical study on the supercontinuum generation in a novel suspended liquid core photonic crystal fiber. Appl. Phys. B 126, 55 (2020). https://doi.org/10.1007/s00340-020-7403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7403-9

Navigation