Skip to main content

Advertisement

Log in

Particulate emissions measurements by laser-based techniques in a boiler fueled by wood pellets

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper describes mainly laser-based techniques applied to a boiler fueled by wood pellets which is a real complicated combustion system. To our knowledge, laser-induced incandescence (LII) and extinction are used to characterize particulate emission at the exhaust for the first time because laser diagnostics are generally applied to laboratory flames, automotive engines and aeroengines. The 30-kW boiler was first characterized by temperature mapping in the combustion chamber and particle diameter analysis by scanning mobility particle sizer at the exhaust and inside the first combustion chamber for a better understanding of the running of this complex combustion system. Non-intrusive laser-based diagnostics including broadband LII, two-color LII and laser extinction excited at 1064 nm have been employed to study the particulate emissions at the exhaust of the boiler during the start-up and the steady-state phases of the boiler. The cross analysis of the experimental results obtained with the different diagnostics shows that particle size distributions, particles volume fractions and the temperature distribution are strongly dependent on the boiler cycle linked to the pellets loading. Laser extinction and LII-based methods provided complementary information about the particulate emissions. The LII technique probes incandescent soot particles formed during the combustion of pellets, while laser extinction detects both soot and non-incandescent particles (such as dust, fly ashes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. WBA Global Bioenergy Association, n.d., WBA global bioenergy statistics 2017. https://worldbioenergy.org/uploads/WBA%20GBS%202017_hq.pdf (2017)

  2. B.C. Boman, A.B. Forsberg, B.G. Järvholm, Adverse health effects from ambient air pollution in relation to residential wood combustion in modern society. Scand. J. Work Environ. Health 29(4), 251–260 (2003)

    Article  Google Scholar 

  3. M.A. Bari, G. Baumbach, B. Kuch, G. Scheffknecht, Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany. Air Qual. Atmos. Health 3(2), 103–116 (2010)

    Article  Google Scholar 

  4. A. Williams, J.M. Jones, L. Ma, M. Pourkashanian, Pollutants from the combustion of solid biomass fuels. Prog. Energy Combust. Sci. 38, 113–137 (2012)

    Article  Google Scholar 

  5. R. Pandey, A.K. Tyagi, Particulate matter emissions from domestic biomass burning in a rural tribal location in the lower Himalayas in India: concern over climate change. Small Scale For. 11, 185–192 (2012)

    Article  Google Scholar 

  6. S.S. Amaral, J. Andrade de Carvalho, M.A.M. Costa, C. Pinheiro, Particulate matter emission factors for biomass combustion. Atmosphere 7, 141–146 (2016)

    Article  ADS  Google Scholar 

  7. K.L. Bignal, S. Langridge, J.L. Zhou, Release of polycyclic aromatic hydrocarbons, carbon monoxide and particulate matter from biomass combustion in a wood-fired boiler under varying boiler conditions. Atmos. Environ. 42, 8863–8871 (2008)

    Article  ADS  Google Scholar 

  8. H. Liu, G. Qiu, Y. Shao, S.B. Riffat, Experimental investigation on flue gas emissions of a domestic biomass boiler under normal and idle combustion conditions. Int. J. Low Carbon Technol. 5, 88–95 (2010)

    Article  Google Scholar 

  9. K.M. Win, T. Persson, C. Bales, Particles and gaseous emissions from realistic operation of residential wood pellet heating systems. Atmos. Environ. 59, 320–327 (2012)

    Article  ADS  Google Scholar 

  10. M.M. Roy, A. Dutta, K. Corscadden, An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace. Appl. Energy 108, 298–307 (2013)

    Article  Google Scholar 

  11. L. Limousy, M. Jeguirim, P. Dutournié, N. Kraiem, M. Lajili, R. Said, Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107, 323–329 (2013)

    Article  Google Scholar 

  12. C. Serrano, H. Portero, E. Monedero, Pine chips combustion in a 50-kW domestic biomass boiler. Fuel 111, 564–573 (2013)

    Article  Google Scholar 

  13. W.J. Smith, S. Morrin, D.J. Timoney, Effect of operating condition on the particulate matter emission factor for a domestic biomass boiler. J. Power Energy 225(Part A), 614–618 (2015)

    Google Scholar 

  14. V.K. Verma, S. Bram, F. Delattin, P. Laha, I. Vandendael, A. Hubin, J. De Ruyck, Agro-pellets for domestic heating boilers: standard laboratory and real life performance. Appl. Energy 90, 17–23 (2012)

    Article  Google Scholar 

  15. M. Markovic, E.A. Bramer, G. Brem, Experimental investigation of wood combustion in a fixed bed with hot air. Waste Manag. 34, 49–62 (2014)

    Article  Google Scholar 

  16. V. Hindasageri, R.P. Vedula, S.V. Prabhu, Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient. Rev. Sci. Instrum. 84, 024902 (2013). (1–11)

    Article  ADS  Google Scholar 

  17. L.A. Melton, Soot diagnostics based on laser heating. Appl. Opt. 23, 2201–2208 (1984)

    Article  ADS  Google Scholar 

  18. B. Axelsson, R. Collin, P.E. Bengtsson, Laser-induced incandescence for soot particle size measurements in premixed flat flames. Appl. Opt. 39, 83–90 (2000)

    Article  Google Scholar 

  19. D.R. Snelling, F. Liu, G.J. Smallwood, O.L. Gülder, Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combust. Flame 136, 180–190 (2004)

    Article  Google Scholar 

  20. B. Axelsson, R. Collin, P.E. Bengtsson, Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration. Appl. Phys. B 72, 367–372 (2001)

    Article  ADS  Google Scholar 

  21. M.Y. Choi, G.W. Mulholland, A. Hamins, T. Kashiwagi, Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combust. Flame 102, 161–169 (1995)

    Article  Google Scholar 

  22. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Laser-induced incandescence: recent trends and current questions. Appl. Phys. B 83, 333–354 (2006)

    Article  ADS  Google Scholar 

  23. H.A. Michelsen, Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles. J. Chem. Phys. 118, 7012–7045 (2003)

    Article  ADS  Google Scholar 

  24. S. Bejaoui, R. Lemaire, P. Desgroux, E. Therssen, Experimental study of the E(m, λ)/E(m, 1064) ratio as a function of wavelength, fuel type, height above the burner and temperature. Appl. Phys. B 116, 313–323 (2013)

    Article  ADS  Google Scholar 

  25. U.O. Köylü, G.M. Faeth, Spectral extinction coefficients of soot aggregates from turbulent diffusion flames. J. Heat Transf. 118, 415–421 (1996)

    Article  Google Scholar 

  26. S.S. Krishnan, K.C. Lin, G.M. Faeth, Extinction and scattering properties of soot emitted from buoyant turbulent diffusion flames. J. Heat Transf. 123, 331–339 (2001)

    Article  Google Scholar 

  27. J. Yon, R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, K.F. Ren, Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements. Appl. Phys. B 104, 253–271 (2011)

    Article  ADS  Google Scholar 

  28. E. Therssen, Y. Bouvier, C. Schoemaecker-Moreau, X. Mercier, P. Desgroux, M. Ziskind, C. Focsa, Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescence. Appl. Phys. B 89, 417–427 (2007)

    Article  ADS  Google Scholar 

  29. J. Zerbs, K.P. Geigle, O. Lammel, J. Hader, R. Stirn, R. Hadef, W. Meier, The influence of wavelength in extinction measurements and beam steering in laser-induced incandescence measurements in sooting flames. Appl. Phys. B 96, 683–694 (2009)

    Article  ADS  Google Scholar 

  30. J. Yon, E. Therssen, F. Liu, S. Bejaoui, D. Hebert, Influence of soot aggregate size and internal multiple scattering on LII signal and the absorption function variation with wavelength determined by the TEW-LII method. Appl. Phys. B 119, 643–655 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by several funding sources: the Région Hauts-de-France, in the framework of the regional project SYLWATT and in partnership with LAMIH (UPHF, Valenciennes), PC2A (Lille), CCM (ULCO, Dunkerque) and Enerbiom; the company Enerbiom and the ANRT (National Association of Research and Technology) for the Ph.D. Grant awarded to Ms. Creyx; the Région Hauts-de-France for the post-doctoral grant awarded to Ms. Bejaoui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Therssen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of topical collection of on Laser-Induced Incandescence (Klaus Peter Geigle and Stefan Will).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejaoui, S., Creyx, M., Delacourt, E. et al. Particulate emissions measurements by laser-based techniques in a boiler fueled by wood pellets. Appl. Phys. B 126, 6 (2020). https://doi.org/10.1007/s00340-019-7350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7350-5

Navigation