Skip to main content
Log in

3D nanoimprinted Fabry–Pérot filter arrays and methodologies for optical characterization

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Fabry–Pérot (FP) filter arrays fabricated by high-resolution three dimensional (3D) NanoImprint technology are presented. A fabrication process to implement 3D templates with very high vertical resolution is developed. Filter arrays with 64 different cavity heights have been fabricated requiring only one single imprint step. Different optical methods are involved in this paper to characterize geometric and spectral properties. In order to investigate the transfer accuracy of the surface quality from the NanoImprint template to the filter, we use white light interferometry (WLI) measurements. Surface roughness and structure height accuracy of <1 nm for both values demonstrate the conservation of these critical parameters during the 3D NanoImprint process. Additionally, an optical characterization methodology for spectral transmission and reflection measurements of the filter arrays is introduced and applied. A compact microscope spectrometer setup which allows efficient handling, high resolution and short inspection time is verified by comparing measurement results to that of an optical bench setup used as a reference. First, this paper focuses on the foundation of the FP filter arrays, second on the technological fabrication, third on validation calibration of the setup and forth on the characterization of the filter arrays. The measurements envisage the spectral position of filter transmission lines, the full width at half maximum (FWHM) and the total spectral bandwidth of the array, i.e. the stopbands of the included Distributed Bragg Reflectors (DBRs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.Y. Chong, S.P. Kumar, Proc. IEEE 91, 1247 (2003)

    Article  Google Scholar 

  2. R. Narayanaswamy, O.S. Wolfbeis, Optical Sensors: Industrial, Environmental and Diagnostic Applications (Springer, Berlin, 2004), p. 93

    Google Scholar 

  3. G.V.G. Baranoski, A. Krishnaswamy, Rev. Inf. Teor. Apl. 11, 33 (2004)

    Google Scholar 

  4. E. Angelopoulou, Measurement MS-CIS-99-29, 1 (1999)

    Google Scholar 

  5. M. Friebel, M. Meinke, J. Biomed. Opt. 10, 064019 (2005)

    Article  ADS  Google Scholar 

  6. T.V. Dinh, B.M. Cullum, D.L. Stokes, Sens. Actuators B, Chem. 74, 2 (2001)

    Article  Google Scholar 

  7. G.W. Hunter, J.C. Xu, A.M. Biaggi-Labiosa, D. Laskowski, P.K. Dutta, S.P. Mondal, B.J. Ward, D.B. Makel, C.C. Liu, C.W. Chang, R.A. Dweik, J. Breath Res. 5, 037111 (2011)

    Article  ADS  Google Scholar 

  8. R.F. Wolffenbuttel, IEEE Trans. Instrum. Meas. 53, 197 (2004)

    Article  Google Scholar 

  9. J. Correia, M. Bartek, R.F. Woffenbuttel, in International Electron Devices Meeting (1998), p. 467

    Google Scholar 

  10. R.F. Wolffenbuttel, J. Micromech. Microeng. 15, 145 (2005)

    Article  Google Scholar 

  11. S.W. Wang, M. Li, C.S. Xia, H.Q. Wang, X.S. Chen, W. Lu, Appl. Phys. B 88, 281 (2007)

    Article  ADS  Google Scholar 

  12. S. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, T. Zhang, Opt. Lett. 32, 632 (2007)

    Article  ADS  Google Scholar 

  13. M. Bartels, F. Koehler, S. Wittzack, X. Wang, H. Hillmer, Nanos 03(08), 18 (2008)

    Google Scholar 

  14. C. Woidt, O. Setyawati, H. Hillmer, Nanotechnological Basis for Advanced Sensors (Springer, Berlin, 2011), p. 537

    Book  Google Scholar 

  15. A. Albrecht, H. Hillmer, Nonlinear Opt. Quantum Opt. 43 (2011)

  16. L.J. Guo, Adv. Mater. 19, 495 (2007)

    Article  Google Scholar 

  17. M. Colburn et al., Proc. SPIE 3676, 379 (1999)

    Article  ADS  Google Scholar 

  18. Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)

    Article  ADS  Google Scholar 

  19. R.F. Pease, S.Y. Chou, Proc. IEEE 96, 248 (2008)

    Article  Google Scholar 

  20. S.O. Kassap, Optoelectronics and Photonics (Prentice-Hall, Englewood Cliffs, 2001), p. 27

    Google Scholar 

  21. X. Wang, Ph.D. thesis, High resolution 3D nanoimprint technology: template fabrication, application in Fabry-Pérot-filter-based nanospectrometers (University Kassel Press, ISBN 978-3-86219-112-3, 2010) p. 43

  22. R.T. Blunt, CS Mantech, 59 (2006)

  23. M. Blomberg, H. Kattelus, A. Miranto, Sens. Actuators A, Phys. 162, 184 (2010)

    Article  Google Scholar 

  24. J. Daleiden, A. Tarraf, S. Irmer, F. Römer, C. Prott, E. Ataro, M. Strassner, H. Hillmer, J. Microlithogr., Microfab., Microsyst. 2, 265 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank to R. Zamora, T. Kusserow, W. Koecher, C. Sandhagen, M. Hornung, B. Briggs, Y. Wang, I. Memmon, A. Ullah, W. Al-Esayi, M.I. Hafiz, J. Krumpholz, D. Gutermuth and N. D’Agostino for technical support and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Mai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, H.H., Albrecht, A., Woidt, C. et al. 3D nanoimprinted Fabry–Pérot filter arrays and methodologies for optical characterization. Appl. Phys. B 107, 755–764 (2012). https://doi.org/10.1007/s00340-012-5063-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5063-0

Keywords

Navigation