Skip to main content
Log in

Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Wall collision broadening of absorption lines of gases confined in porous media is a recently opened domain of high-resolution spectroscopy. Here, we present an experimental investigation of its application for pore size assessment. We report on the manufacturing of nanoporous zirconia ceramics with well-defined pore sizes fine-tuned from 50 to 150 nm. The resulting pore structure is characterized using mercury intrusion porosimetry, and the optical properties of these strongly scattering materials are measured using femtosecond photon time-of-flight spectroscopy (transport mean free paths found to be tuned from 2.3 to 1.2 μm as the pore size increase). Wall collision line broadening is studied by performing near-infrared (760 nm) high-resolution diode laser spectroscopy of confined oxygen molecules. A simple method for quantitative estimation of the pore size is outlined and shown to produce results in agreement with mercury intrusion porosimetry. At the same time, the need for improved understanding of wall collision broadening is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)

    Article  Google Scholar 

  2. P. Wong, Methods in the Physics of Porous Media (Academic Press, San Diego, 1999)

    Google Scholar 

  3. C.C. Egger, C. du Fresne, V.I. Raman, V. Schädler, T. Frechen, S.V. Roth, P. Müller-Buschbaum, Langmuir 24, 5877 (2008)

    Article  Google Scholar 

  4. E.W. Washburn, Phys. Rev. 17, 273 (1921)

    Article  ADS  Google Scholar 

  5. C.A. León y León, Adv. Colloid Interface Sci. 76, 341 (1998)

    Article  Google Scholar 

  6. F. Rouquérol, J. Rouquérol, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic Press, San Diego, 1999)

    Google Scholar 

  7. S. Lowell, Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density (Springer, Berlin, 2004)

    Book  Google Scholar 

  8. N. Kanellopoulos, Nanoporous Materials: Advanced Techniques for Characterization, Modeling, and Processing (Taylor and Francis, New York, 2011)

    Book  Google Scholar 

  9. W.B. Lindquist, A. Venkatarangan, J. Dunsmuir, T.-F. Wong, J. Geophys. Res. 105, 21509 (2000)

    Article  ADS  Google Scholar 

  10. A. Sakdinawat, D. Attwood, Nat. Photonics 4, 840 (2010)

    Article  ADS  Google Scholar 

  11. A.T. Watson, C.T.P. Chang, Prog. Nucl. Magn. Reson. Spectrosc. 31, 343 (1997)

    Article  Google Scholar 

  12. T. Svensson, Z. Shen, Appl. Phys. Lett. 96, 021107 (2010)

    Article  ADS  Google Scholar 

  13. T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011)

    Article  ADS  Google Scholar 

  14. C.T. Xu, M. Lewander, S. Andersson-Engels, E. Adolfsson, T. Svensson, S. Svanberg, Phys. Rev. A 84, 042705 (2011)

    Article  ADS  Google Scholar 

  15. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg, Opt. Lett. 26, 16 (2001)

    Article  ADS  Google Scholar 

  16. R.H. Johnson, M.W.P. Strandberg, Phys. Rev. 86, 811 (1952)

    Article  ADS  Google Scholar 

  17. M. Danos, S. Geschwind, Phys. Rev. 91, 1159 (1953)

    Article  ADS  Google Scholar 

  18. S.C.M. Luijendijk, J. Phys. B, At. Mol. Opt. Phys. 8, 2995 (1975)

    Article  ADS  Google Scholar 

  19. P.E. Wagner, R.M. Somers, J.L. Jenkins, J. Phys. B, At. Mol. Opt. Phys. 14, 4763 (1981)

    Article  ADS  Google Scholar 

  20. S. Ghosh, J.E. Sharping, D.G. Ouzounov, A.L. Gaeta, Phys. Rev. Lett. 94, 093902 (2005)

    Article  ADS  Google Scholar 

  21. S. Ghosh, A.R. Bhagwat, C.K. Renshaw, S. Goh, A.L. Gaeta, B.J. Kirby, Phys. Rev. Lett. 97, 023603 (2006)

    Article  ADS  Google Scholar 

  22. J. Hald, J.C. Petersen, J. Henningsen, Phys. Rev. Lett. 98, 213902 (2007)

    Article  ADS  Google Scholar 

  23. T. Svensson, E. Alerstam, J. Johansson, S. Andersson-Engels, Opt. Lett. 35, 1740 (2010)

    Article  ADS  Google Scholar 

  24. T. Svensson, M. Lewander, S. Svanberg, Opt. Express 18, 16460 (2010)

    Article  ADS  Google Scholar 

  25. L.F. Gate, J. Phys. D, Appl. Phys. 5, 837 (1972)

    Article  ADS  Google Scholar 

  26. J.G.J. Peelen, R. Metselaa, J. Appl. Phys. 45, 216 (1974)

    Article  ADS  Google Scholar 

  27. W.W. Chen, B. Dunn, J. Am. Ceram. Soc. 76, 2086 (1993)

    Article  Google Scholar 

  28. J. Manara, R. Caps, F. Raether, J. Fricke, Opt. Commun. 168, 237 (1999)

    Article  ADS  Google Scholar 

  29. R. Springer, F. Raether, R. Caps, J. Manara, High Temp., High Press. 32, 385 (2000)

    Article  Google Scholar 

  30. J. Manara, R. Caps, J. Fricke, Int. J. Thermophys. 26, 531 (2005)

    Article  ADS  Google Scholar 

  31. A. Wolf, B. Terheiden, R. Brendel, J. Appl. Phys. 104, 033106 (2008)

    Article  ADS  Google Scholar 

  32. D.L. Wood, K. Nassau, Appl. Opt. 21, 2978 (1982)

    Article  ADS  Google Scholar 

  33. L.A. Dombrovsky, H.K. Tagne, D. Baillis, L. Gremillard, Infrared Phys. Technol. 51, 44 (2007)

    Article  ADS  Google Scholar 

  34. J.G. Rivas, A. Lagendijk, R.W. Tjerkstra, D. Vanmaekelbergh, J.J. Kelly, Appl. Phys. Lett. 80, 4498 (2002)

    Article  ADS  Google Scholar 

  35. M. Störzer, P. Gross, C.M. Aegerter, G. Maret, Phys. Rev. Lett. 96, 063904 (2006)

    Article  ADS  Google Scholar 

  36. M. Reufer, L.F. Rojas-Ochoa, S. Eiden, J.J. Saenz, F. Scheffold, Appl. Phys. Lett. 91, 171904 (2007)

    Article  ADS  Google Scholar 

  37. J. Manara, M. Reidinger, S. Korder, M. Arduini-Schuster, J. Fricke, Int. J. Thermophys. 28, 1628 (2007)

    Article  ADS  Google Scholar 

  38. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C.J. Oton, L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003)

    Article  ADS  Google Scholar 

  39. D. Contini, F. Martelli, G. Zaccanti, Appl. Opt. 36, 4587 (1997)

    Article  ADS  Google Scholar 

  40. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Appl. Phys. B 90, 345 (2008)

    Article  ADS  Google Scholar 

  41. D.A. Long, D.K. Havey, M. Okumura, C.E. Miller, J.T. Hodges, J. Quant. Spectrosc. Radiat. Transf. 111, 2021 (2010)

    Article  ADS  Google Scholar 

  42. T. Svensson, M. Andersson, L. Rippe, J. Johansson, S. Folestad, S. Andersson-Engels, Opt. Lett. 33, 80 (2008)

    Article  ADS  Google Scholar 

  43. I.M. Vellekoop, P. Lodahl, A. Lagendijk, Phys. Rev. E 71, 056604 (2005)

    Article  ADS  Google Scholar 

  44. M.C.W. van Rossum, T.M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999)

    Article  ADS  Google Scholar 

  45. J.J. Olivero, R.L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17, 233 (1977)

    Article  ADS  Google Scholar 

  46. S. Diamond, Cem. Concr. Res. 30, 1517 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council through a direct grant, a Linnaeus grant to the Lund Laser Centre, and a postdoctoral fellowship granted to T.S. This work also benefited from the Network of Excellence on Nanophotonics for Energy Efficiency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, T., Adolfsson, E., Burresi, M. et al. Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes. Appl. Phys. B 110, 147–154 (2013). https://doi.org/10.1007/s00340-012-5011-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5011-z

Keywords

Navigation