Skip to main content
Log in

Multi-soliton complexes in mode-locked fiber lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We numerically investigate the formation of soliton pairs (bound states) in mode-locked fiber ring lasers in the normal dispersion domain. In the distributed mathematical model (complex cubic-quintic Ginzburg–Landau equation), we observe a discrete family of soliton pairs with equidistantly increasing peak separation. We show that stabilization of previously unstable bound states can be achieved when the finite relaxation time of the saturable absorber is taken into account. The domain of stability can be controlled by varying this relaxation time. Furthermore, we investigate the parameter domain where the region of stable bound states does not shrink to zero for vanishing absorber recovery time corresponding to a laser with an instantaneous saturable absorber. For a certain domain of the small-signal gain, we obtain a robust first level bound state with almost constant separation where the phase of the two pulses evolves independently. Moreover, their phase difference can evolve either periodically or chaotically depending on the small signal gain. Interestingly, higher level bound states exhibit a fundamentally different dynamics. They represent oscillating solutions with a phase difference alternating between zero and π.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nakazawa, E. Yoshida, Y. Kimura, Appl. Phys. Lett. 59, 2073 (1991)

    Article  ADS  Google Scholar 

  2. F. Ilday, J. Buckley, W. Clark, F. Wise, Phys. Rev. Lett. 92, 213902 (2004)

    Article  ADS  Google Scholar 

  3. J.M. Soto-Crespo, N.N. Akhmediev, B.C. Collings, S.T. Cundiff, K. Bergman, W.H. Knox, J. Opt. Soc. Am. B 17, 366 (2000)

    Article  ADS  Google Scholar 

  4. D.Y. Tang, H. Zhang, L.M. Zhao, X. Wu, Phys. Rev. Lett. 101, 153904 (2009)

    Article  ADS  Google Scholar 

  5. H. Zhang, D.Y. Tang, L.M. Zhao, X. Wu, http://arxiv.org/abs/0903.1968v2

  6. N.N. Akhmediev, A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997)

    Google Scholar 

  7. D.Y. Tang, W.S. Man, H.Y. Tam, P.D. Drummond, Phys. Rev. A 64, 033814 (2001)

    Article  ADS  Google Scholar 

  8. B. Ortaç, A. Hideur, T. Chartier, M. Brunel, Ph. Grelu, H. Leblond, F. Sanchez, IEEE Photonics Technol. Lett. 16, 1274 (2004)

    Article  ADS  Google Scholar 

  9. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, F. Sanchez, Phys. Rev. A 78, 043806 (2008)

    Article  ADS  Google Scholar 

  10. D.Y. Tang, W.S. Man, H.Y. Tam, P.D. Drummond, Phys. Rev. A 64, 033814 (2001)

    Article  ADS  Google Scholar 

  11. A. Chong, W. Renniger, F. Wise, Opt. Lett. 32, 2408 (2007)

    Article  ADS  Google Scholar 

  12. F.O. Ilday, J. Buckley, W. Clark, F. Wise, Phys. Rev. Lett. 92, 213902 (2004)

    Article  ADS  Google Scholar 

  13. J.M. Arnold, A.D. Boardman, H.M. Mehta, R.C.J. Putman, Opt. Commun. 122, 48 (1995)

    Article  ADS  Google Scholar 

  14. V.V. Afanasjev, N. Akhmediev, Opt. Lett. 20, 1970 (1995)

    Article  ADS  Google Scholar 

  15. V.V. Afanasjev, N. Akhmediev, Phys. Rev. E 53, 6471 (1996)

    Article  ADS  Google Scholar 

  16. N.N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. A. Komarov, K. Komarov, F. Sanchez, Phys. Rev. A 79, 033807 (2009)

    Article  ADS  Google Scholar 

  18. B.A. Malomed, Phys. Rev. A 44, 6954 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.M. Soto-Crespo, Ph. Grelu, Lect. Notes Phys. 661, 207 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. J.M. Soto-Crespo, N.N. Akhmediev, J. Opt. Soc. Am. B 16, 674 (1999)

    Article  ADS  Google Scholar 

  21. J.M. Soto-Crespo, Ph. Grelu, N.N. Akhmediev, N. Devine, Phys. Rev. E 75, 016613 (2007)

    Article  ADS  Google Scholar 

  22. G.P. Agrawal, Phys. Rev. A 44, 7493 (1991)

    Article  ADS  Google Scholar 

  23. A. Zaviyalov, R. Iliew, O. Egorov, F. Lederer, J. Opt. Soc. Am. B 27, 2313 (2010)

    Article  ADS  Google Scholar 

  24. G.P. Agrawal, N. Olsson, IEEE J. Quantum Electron. QE-25, 2297 (1997)

    ADS  Google Scholar 

  25. V.V. Afanasjev, Opt. Lett. 20, 704 (1995)

    Article  ADS  Google Scholar 

  26. V.V. Afanasjev, N. Akhmediev, Phys. Rev. E 53, 6471 (1996)

    Article  ADS  Google Scholar 

  27. V.V. Afanasjev, B.A. Malomed, P.L. Chu, Phys. Rev. E 56, 6020 (1997)

    Article  ADS  Google Scholar 

  28. N.N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A. Zavyalov, R. Iliew, O. Egorov, F. Lederer, Phys. Rev. A 79, 053841 (2009)

    Article  ADS  Google Scholar 

  30. S. Skupin, M. Grech, W. Krolikowski, Opt. Express 16, 9118 (2008)

    Article  ADS  Google Scholar 

  31. A. Zavyalov, R. Iliew, O. Egorov, F. Lederer, Opt. Lett. 34, 3827 (2009)

    Article  ADS  Google Scholar 

  32. A. Zavyalov, R. Iliew, O. Egorov, F. Lederer, Phys. Rev. A 80, 043829 (2009)

    Article  ADS  Google Scholar 

  33. B. Ortaç, A. Zaviyalov, C. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, A. Tünnermann, Opt. Lett. 35, 1578 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zaviyalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaviyalov, A., Iliew, R., Egorov, O. et al. Multi-soliton complexes in mode-locked fiber lasers. Appl. Phys. B 104, 513–521 (2011). https://doi.org/10.1007/s00340-011-4641-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4641-x

Keywords

Navigation