Skip to main content

Advertisement

Log in

Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study the production of radioisotopes for nuclear medicine in (γ,xn+yp) photonuclear reactions or (γ,γ′) photoexcitation reactions with high-flux [(1013–1015)γ/s], small diameter ∼(100 μm)2 and small bandwidth (ΔE/E≈10−3–10−4) γ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,xn+yp) reactions with (ion = p,d,α) from particle accelerators like cyclotrons and (n,γ) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ-beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). However, for ions with a strong atomic stopping only a fraction of less than 10−2 leads to nuclear reactions resulting in a target heating, which is at least 105 times larger per produced radioactive ion and often limits the achievable activity. In photonuclear reactions the well defined initial excitation energy of the compound nucleus leads to a small number of reaction channels and enables new combinations of target isotope and final radioisotope. The narrow bandwidth γ excitation may make use of the fine structure of the Pygmy Dipole Resonance (PDR) or fluctuations in γ-width leading to increased cross sections. Within a rather short period compared to the isotopic half-life, a target area of the order of (100 μm)2 can be highly transmuted, resulting in a very high specific activity. (γ,γ′) isomer production via specially selected γ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ-beams allow to produce certain radioisotopes, e.g. 47Sc, 44Ti, 67Cu, 103Pd, 117mSn, 169Er, 195mPt or 225Ac, with higher specific activity and/or more economically than with classical methods. This will open the door for completely new clinical applications of radioisotopes. For example 195mPt could be used to verify the patient’s response to chemotherapy with platinum compounds before a complete treatment is performed. Also innovative isotopes like 47Sc, 67Cu and 225Ac could be produced for the first time in sufficient quantities for large-scale application in targeted radionuclide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ch. Schiepers, Diagnostic Nuclear Medicine (Springer, Berlin, 2006)

    Google Scholar 

  2. G.J.R. Cook, Clinical Nuclear Medicine (Hodder Arnold, London, 2006)

    Google Scholar 

  3. J.C. Reubi, H.R. Mäcke, E.P. Krenning, J. Nucl. Med. 46, 67S (2005)

    Google Scholar 

  4. C.A. Boswell, M.W. Brechbiel, Nucl. Med. Biol. 34, 757 (2007)

    Article  Google Scholar 

  5. G.J. Beyer, Hyperfine Interact. 129, 529 (2000)

    Article  ADS  Google Scholar 

  6. J.C. Reubi, J.-C. Schär, B. Wasser, S. Wenger, A. Heppler, J.S. Schmidt, H.R. Mäcke, Eur. J. Nucl. Med. Mol. Imaging 27, 273 (2000)

    Article  Google Scholar 

  7. H.R. Maecke, M. Hofmann, U. Haberkorn, J. Nucl. Med. 46(Suppl. 1), 172S (2005)

    Google Scholar 

  8. U. Kneissl, N. Pietralla, A. Zilges, J. Phys. G 32, R217 (2006)

    ADS  Google Scholar 

  9. H.R. Weller, M.W. Ahmed, H. Gao, W. Torrow, U.K. Wu, M. Gai, R. Miskimen, Prog. Part. Nucl. Phys. 62, 257 (2009)

    Article  ADS  Google Scholar 

  10. W.J. Brown, S.G. Anderson, C.P.J. Barty, S.M. Betts, R. Booth, J.K. Crane, D.N. Fiffinghoff, D.J. Gibson, F.V. Hartmann, E.P. Hartouni, J. Kuba, G.P. Le Sage, D.R. Slaughter, A.M. Tremaine, A.J. Wootton, P.T. Springer, Phys. Rev. ST AB 7, 060702 (2004)

    ADS  Google Scholar 

  11. F. Albert, S.G. Anderson, G.A. Anderson, S.M. Betts, D.J. Gibson, C.A. Hagemann, J. Hall, M.S. Johnson, M.J. Messerly, X.A. Semenov, M.Y. Shoerdin, A.M. Freimaine, F.V. Hartmann, C.W. Siders, D.P. McNabb, C.P.J. Barty, Opt. Lett. 35, 354 (2010)

    Article  ADS  Google Scholar 

  12. C. Barty, http:/www.eli-np.ro/executivecommittee-meeting-april12-13.php (2010)

  13. http:/www.eli-np.ro/ (2010)

  14. R. Hajima, N. Kikuzawa, N. Nishimori, T. Hayakawa, T. Shizuma, K. Kawase, M. Kando, E. Minehara, H. Toyokawa, H. Ohgaki, Nucl. Instrum. Methods A 608, S57 (2009)

    Article  Google Scholar 

  15. R. Hajima, http:/www.eli-np.ro/excecutivecommittee-meeting-april12-13.php (2010)

  16. V.N. Litvinenko, I. Ben-Zvi, D. Kayran, I. Pogorelsky, E. Pozdeyev, T. Roser, V. Yakimenko, IEEE Trans. Plasma Sci. 36, 1799 (2008)

    Article  ADS  Google Scholar 

  17. D. Habs, M. Hegelich, J. Schreiber, M. Gross, A. Henig, D. Kiefer, D. Jung, Appl. Phys. B 93, 349 (2008)

    Article  ADS  Google Scholar 

  18. M.S. Dewey, E.G. Kessler, R.D. Deslattes, H.G. Börner, M. Jentschel, C. Doll, P. Mutti, Phys. Rev. C 73, 044303 (2006)

    Article  ADS  Google Scholar 

  19. Experimental Nuclear Reaction Data (EXFOR) database. http://www.nndc.bnl.gov/exfor/ (2010)

  20. E. Segrè, Nuclei and Particles (W.A. Benjamin, London, 1977)

    Google Scholar 

  21. T. von Egidy, D. Bucurescu, Phys. Rev. C 72, 044311 (2005)

    Article  ADS  Google Scholar 

  22. H.A. Weidenmüller, G.G. Mitchell, Rev. Mod. Phys. 81, 539 (2009)

    Article  ADS  Google Scholar 

  23. G.E. Mitchell, A. Richter, H.A. Weidenmüller, Rev. Mod. Phys. 82, 2845 (2010)

    Article  ADS  Google Scholar 

  24. J.H. Hubbell, H.A. Gimm, I. Øverbø, J. Phys. Chem. Ref. Data 9, 1023 (1980)

    Article  ADS  Google Scholar 

  25. Y.A. Karelin, Y.N. Gordeev, V.T. Filimonov, Y.G. Toporov, A.A. Yadovin, V.I. Karasev, V.M. Lebedev, V.M. Radchenko, R.A. Kuznetsov, Appl. Radiat. Isotopes 48, 1585 (1997)

    Article  Google Scholar 

  26. F.F. (Russ) Knapp Jr., S. Mirzadeh, A.L. Beeta, M. Du, J. Radioanal. Nucl. Chem. 263, 503 (2005)

    Google Scholar 

  27. P. von Neumann-Cosel, A. Richter, C. Spieler, W. Ziegler, J.J. Carroll, T.W. Sinor, D.G. Richmond, K.N. Taylor, C.B. Collins, K. Heyde, Phys. Lett. B 266, 9 (1991)

    ADS  Google Scholar 

  28. J.J. Carroll, T.W. Sinor, D.G. Richmond, K.N. Taylor, C.B. Collins, M. Huber, N. Huxel, P. von Neumann-Cosel, A. Richter, C. Spieler, W. Ziegler, Phys. Rev. C 43, 897 (1991)

    Article  ADS  Google Scholar 

  29. J.J. Carroll, M.J. Byrd, D.G. Richmond, T.W. Sinor, K.N. Taylor, W.L. Hodge, Y. Paiss, C.D. Eberhard, J.A. Anderson, C.B. Collins, E.C. Scasbrough, P.P. Antich, F.J. Agee, D. Davis, G.A. Huttlin, K.G. Kerris, M.S. Litz, D.A. Whittaker, Phys. Rev. C 43, 1238 (1991)

    Article  ADS  Google Scholar 

  30. J.J. Carroll, C.B. Collins, K. Heyde, M. Huber, P. von Neumann-Cosel, V.Y. Ponomarev, D.G. Richmond, A. Richter, C. Schlegel, T.W. Sinor, K.N. Taylor, Phys. Rev. C 48, 2238 (1993)

    Article  ADS  Google Scholar 

  31. X. Ledoux, J. Sigaud, T. Granier, J.-P. Lochard, Y. Patin, P. Pras, C. Varignon, J.-B. Laborie, Y. Boulin, F. Gansing, Eur. Phys. J. A 27, 59 (2006)

    ADS  Google Scholar 

  32. I. Stefanescu, G. Georgiev, F. Ames, J. Aystö, D.L. Balabanski, G. Bollen, P.A. Butler, J. Cederkäll, N. Champault, T. Davinson, A. De Maesschalck, P. Delahaye, J. Eberth, D. Fedorov, V.N. Fedosseev, L.M. Fraile, S. Franchoo, K. Gladnishki, D. Habs, K. Heyde, H. Huyse, O. Ivanov, J. Iwanicki, J. Jolie, B. Jonson, Th. Kröll, R. Krücken, O. Kester, U. Köster, A. Lagoyannis, L. Liljeby, G. Lo Bianco, B.A. Marsh, O. Niedermaier, T. Nilsson, M. Oinonen, G. Pascovici, P. Reiter, A. Saltarelli, H. Scheit, D. Schwalm, T. Sieber, N. Smirnova, J. Van De Walle, P. Van Duppen, S. Zemlyanoi, N. Warr, D. Weisshaar, F. Wenander, Phys. Rev. Lett. 98, 122701 (2007)

    Article  ADS  Google Scholar 

  33. Nuclear structure & decay database. http://www.nndc.bnl.gov/nudat2/ (2010)

  34. V. Bondarenko, J. Honzatko, I. Tomandl, D. Bucurescu, T. von Egidy, J. Ott, W. Schauer, H.-F. Wirth, C. Doll, Phys. Rev. C 60, 027302 (1999)

    Article  ADS  Google Scholar 

  35. J.A. Dowell, A.R. Sancho, D. Anand, W. Wolf, Adv. Drug Deliv. Rev. 41, 111 (2000)

    Article  Google Scholar 

  36. M.J. Rivard, L.M. Bobek, R.A. Butler, M.A. Garland, D.J. Hill, J.K. Krieger, J.B. Muckerheide, B.D. Patton, E.B. Silberstein, Appl. Radiat. Isotopes 63, 157 (2005)

    Article  Google Scholar 

  37. A. Bishayee, D.V. Rao, S.C. Srivastava, L.G. Bouchet, W.E. Bolch, R.W. Howell, J. Nucl. Med. 41, 2043 (2000)

    Google Scholar 

  38. B. Ponsard, S.C. Srivastava, L.F. Mausner, F.F. (Russ) Knapp, M.A. Garland, S. Mirzadeh, Appl. Radiat. Isotopes 67, 1158 (2009)

    Article  Google Scholar 

  39. D.M. Lewis, Eur. J. Nucl. Med. Mol. Imaging 36, 1371 (2009)

    Article  Google Scholar 

  40. The supply of medical radioisotopes, interim report of the OECD/NEA high-level group on security of supply of medical radioisotopes; http://www.nea.fr/med-radio/ (2010)

  41. A.C. Apostolidis, R. Carlos-Marquez, W. Janssens, R. Molinet, T. Nikula, A. Ouadi, Nucl. News 44, 29 (2001)

    Google Scholar 

  42. A.C. Apostolidis, R. Molinet, J. McGinley, K. Abbas, J. Möllenbeck, A. Morgenstern, Appl. Radiat. Isotopes 62, 383 (2005)

    Article  Google Scholar 

  43. O.D. Maslov, A.V. Sabel’nikov, S.N. Dmitriev, Radiochemistry 48, 195 (2006)

    Article  Google Scholar 

  44. H. Uusijärvi, P. Bernhardt, F. Rösch, H.R. Maecke, E. Forssell-Aronsson, J. Nucl. Med. 47, 807 (2006)

    Google Scholar 

  45. N. Karavida, A. Notopoulos, Hippokratia 14, 22 (2010)

    Google Scholar 

  46. F. Buchegger, F. Perillo-Adamer, Y.M. Dupertuis, A. Bischof Delaloye, Eur. J. Nucl. Med. Mol. Imaging 33, 1352 (2006)

    Article  Google Scholar 

  47. C.J. Anderson, R. Ferdani, Cancer Biother. Radiopharm. 24, 379 (2009)

    Article  Google Scholar 

  48. D. Baltas, G. Lymperopoulou, E. Löffler, P. Mavroidis, Med. Phys. 37, 2572 (2010)

    Article  Google Scholar 

  49. N. Jansen, J.M. Deneufbourg, P. Nickers, Int. J. Radiat. Oncol. Biol. Phys. 67, 1052 (2007)

    Article  Google Scholar 

  50. C. Grignon, J. Barbet, M. Bardies, T. Carlier, J.F. Chantal, O. Couturier, J.P. Cassonneau, A. Faivre, L. Ferrer, S. Gireault, T. Haruyama, P. Le Ray, L. Luquin, S. Lupone, C. Metivier, E. Morteau, N. Servagent, D. Thers, Nucl. Instrum. Methods A 571, 142 (2007)

    Article  ADS  Google Scholar 

  51. S. Hassfjell, M.W. Brechbiel, Chem. Rev. 101, 2019 (2001)

    Article  Google Scholar 

  52. Y. Miao, M. Hylarides, D.R. Fisher, T. Shelton, H. Moore, D.W. Wester, A.R. Fritzberg, C.T. Winkelmann, T. Hoffman, T.P. Quinn, Clin. Cancer Res. 11, 5616 (2005)

    Article  Google Scholar 

  53. M.L.P. Antunes, M.N. Martins, Phys. Rev. C 52, 1484 (1995)

    Article  ADS  Google Scholar 

  54. E. Garin, Y. Rolland, E. Boucher, V. Ardisson, S. Laffont, K. Boudjema, P. Bourguet, J.L. Raoul, Eur. J. Nucl. Med. Mol. Imaging 37, 453 (2010)

    Article  Google Scholar 

  55. H.L. Ravn, G.J. Beyer, U. Köster, J. Lettry, R. Catherall, A. Hohn, J. Neuhausen, L. Zanini, A. Türler, Patent WO2006074960, 2006

  56. K. Abbas, S. Buono, N. Burgio, G. Cotogno, N. Gibson, L. Maciocco, C. Mercurio, A. Santagata, F. Simonelli, H. Tagziria, Nucl. Instrum. Methods A 601, 223 (2009)

    Article  ADS  Google Scholar 

  57. S.H. Aaaltoma, V.V. Kataja, T. Lahtineu, J.-E. Palmgren, T. Forsell, Radiother. Oncol. 91, 213 (2009)

    Article  Google Scholar 

  58. W. Ensinger, P. Vater, S. Heise, A. Moeslang, K. Schloesser, Surf. Coat. Technol. 196, 288 (2005)

    Article  Google Scholar 

  59. W. Assmann, M. Schubert, A. Held, A. Pichler, A. Chill, S. Kiermaier, K. Schlösser, H. Busch, K. Schenk, D. Streufert, I. Lanzl, Nucl. Instrum. Methods B 257, 108 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Habs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habs, D., Köster, U. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance. Appl. Phys. B 103, 501–519 (2011). https://doi.org/10.1007/s00340-010-4278-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4278-1

Keywords

Navigation