Skip to main content
Log in

Three dimensional adaptive meshing scheme applied to the control of the spatial representation of complex field pattern in electromagnetics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present an improved adaptive mesh process based on Riemannian transformation to control the accuracy in high field gradient representation for diffraction problems. Such an adaptive meshing is applied in representing the electromagnetic intensity around a metallic submicronic spherical particle, which is known to present high gradients in limited zones of space including the interference pattern of the electromagnetic field. We show that, the precision of the field variation being controlled, this improved scheme permits drastically decreasing the computational time as well as the memory requirements by adapting the number and the position of nodes where the electromagnetic field must be computed and represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Mie, Ann. Phys. 25, 377 (1908)

    Article  MATH  Google Scholar 

  2. D. Barchiesi, D. Van Labeke, J. Mod. Opt. 40, 1239 (1993)

    Article  ADS  Google Scholar 

  3. N.M. Mojarad, V. Sandoghdar, M. Agio, J. Opt. Soc. Am. B 25, 651 (2008)

    Article  ADS  Google Scholar 

  4. A.B. Stilgoe, T.A. Nieminen, G. Knöener, N.R. Heckenberg, H. Rubintsztein-Dunlop, Opt. Express 16, 15039 (2008)

    Article  ADS  Google Scholar 

  5. S. Foteinopoulou, J.P. Vigneron, C. Vandenbem, Opt. Express 15, 4253 (2007)

    Article  ADS  Google Scholar 

  6. Y. Hu, R.C. Flemming, R.A. Drezek, Opt. Express 16, 19579 (2008)

    Article  ADS  Google Scholar 

  7. T. Grosges, D. Barchiesi, T. Toury, G. Gréhan, Opt. Lett. 33, 2812 (2008)

    Article  ADS  Google Scholar 

  8. J.P. Kottmann, O.J.F. Martin, IEEE Trans. Antennas Propag. 48, 1719 (2000)

    Article  ADS  Google Scholar 

  9. D. Barchiesi, B. Guizal, T. Grosges, Appl. Phys. B-Lasers Opt. 84, 55 (2006)

    Article  ADS  Google Scholar 

  10. D. Barchiesi, E. Kremer, V.P. Mai, T. Grosges, J. Microsc. 229, 525 (2008)

    Article  MathSciNet  Google Scholar 

  11. T. Grosges, H. Borouchaki, D. Barchiesi, Opt. Express 15, 1307 (2007)

    Article  ADS  Google Scholar 

  12. T. Grosges, H. Borouchaki, D. Barchiesi, J. Microsc. 229, 293 (2008)

    Article  MathSciNet  Google Scholar 

  13. P.G. Ciarlet, The Finite Element Method for Elliptic Problem (North Holland, Amsterdam, 1978)

    Google Scholar 

  14. P.L. George, H. Borouchaki, Delaunay Triangulation and Meshing. Applications to Finite Element (Hermès, Paris, 1998)

    Google Scholar 

  15. T. Grosges, S. Petit, D. Barchiesi, S. Hudlet, Opt. Express 12, 5987 (2004)

    Article  ADS  Google Scholar 

  16. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Willey, New York, 2003)

    Google Scholar 

  17. P. Laug, H. Borouchaki, BLSURF, Mesh generator for composite parametric surfaces. User’s Manual, INRIA technical report, RT-0235 (1999)

  18. P.L. George, Finite Elem. Anal. Des. 25, 297 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Grosges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosges, T., Borouchaki, H. & Barchiesi, D. Three dimensional adaptive meshing scheme applied to the control of the spatial representation of complex field pattern in electromagnetics. Appl. Phys. B 101, 883–889 (2010). https://doi.org/10.1007/s00340-010-4155-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4155-y

Keywords

Navigation