Skip to main content
Log in

Characterization of aerosol plumes in nanosecond laser ablation of molecular solids at atmospheric pressure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Ablation of molecular solids with pulsed ultraviolet lasers at atmospheric pressure is an important process in (bio-)organic mass spectrometry. Of practical importance for analytical sampling and analysis are the plume formation and expansion. Plumes formed by atmospheric-pressure laser ablation of anthracene and 2,5-dihydroxybenzoic acid (2,5-DHB) were studied by light scattering imaging, which showed significant material release in the form of aerosols. The monitored plume expansion dynamics could be fitted to the drag-force model, yielding initial plume velocities of 150 m/s for anthracene and 43 m/s for DHB. While the angle of incidence does not affect the plume direction and propagation, a large dependence of the plume-expansion velocity on the laser pulse energy could be found, which is limited at atmospheric pressure by the onset of plasma shielding. With respect to analytical applications, the efficiency of sampling of the laser ablation products by a capillary could be experimentally visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)

    Google Scholar 

  2. A.W. Miziolek, Laser-induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  3. R.E. Russo, X. Mao, H. Liu, J. Gonzalez, S.S. Mao, Talanta 57, 425 (2002)

    Article  Google Scholar 

  4. L. Van Vaeck, H. Struyf, W. Van Roy, F. Adams, Mass Spectrom. Rev. 13, 189 (1994)

    Article  Google Scholar 

  5. L. Van Vaeck, H. Struyf, W. Van Roy, F. Adams, Mass Spectrom. Rev. 13, 209 (1994)

    Article  Google Scholar 

  6. M. Karas, U. Bahr, U. Giessmann, Mass Spectrom. Rev. 10, 335 (1991)

    Article  Google Scholar 

  7. E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991)

    Article  ADS  Google Scholar 

  8. K. Dreisewerd, Chem. Rev. 103, 395 (2003)

    Article  Google Scholar 

  9. P.D. Setz, T.A. Schmitz, R. Zenobi, Rev. Sci. Instrum. 77, 024101 (2006)

    Article  ADS  Google Scholar 

  10. L. Kolaitis, D.M. Lubman, Anal. Chem. 58, 2137 (1986)

    Article  Google Scholar 

  11. V.V. Laiko, M.A. Baldwin, A.L. Burlingame, Anal. Chem. 72, 652 (2000)

    Article  Google Scholar 

  12. R.E. Russo, X. Mao, S.S. Mao, Anal. Chem. A 74, 70 (2002)

    Google Scholar 

  13. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Chem. Rev. 103, 321 (2003)

    Article  Google Scholar 

  14. S. Georgiou, A. Koubenakis, Chem. Rev. 103, 349 (2003)

    Article  Google Scholar 

  15. A. Vertes, P. Juhasz, M. De Wolf, R. Gijbels, Int. J. Mass Spectrom. Ion Proc. 94, 63 (1989)

    Article  Google Scholar 

  16. M. Karas, R. Kruger, Chem. Rev. 103, 427 (2003)

    Article  Google Scholar 

  17. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999)

    ADS  Google Scholar 

  18. S.B. Wen, X.L. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023114 (2007)

    Article  ADS  Google Scholar 

  19. A. Bogaerts, Z. Chen, J. Anal. At. Spectrom. 19, 1169 (2004)

    Article  Google Scholar 

  20. A. Bogaerts, Z.Y. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta, Part B 58, 1867 (2003)

    Article  ADS  Google Scholar 

  21. Z. Chen, A. Bogaerts, J. Appl. Phys. 97, 063305 (2005)

    Article  ADS  Google Scholar 

  22. G. Callies, P. Berger, H. Hugel, J. Phys. D 28, 794 (1995)

    Article  ADS  Google Scholar 

  23. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, S. Iijima, Appl. Phys. A 69, S223 (1999)

    ADS  Google Scholar 

  24. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  25. S.B. Wen, X.L. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023115 (2007)

    Article  ADS  Google Scholar 

  26. R. Hergenroder, Spectrochim. Acta, Part B 61, 284 (2006)

    Article  ADS  Google Scholar 

  27. J.M. Auerhammer, R. Walker, A.F.G. Van Der Meer, B. Jean, Appl. Phys. B 68, 111 (1999)

    Article  ADS  Google Scholar 

  28. I. Apitz, A. Vogel, Appl. Phys. A 81, 329 (2005)

    Article  ADS  Google Scholar 

  29. Z. Chen, A. Vertes, Phys. Rev. E 77, 036316 (2008)

    Article  ADS  Google Scholar 

  30. T.W. Heise, E.S. Yeung, Anal. Chem. 66, 355 (1994)

    Article  Google Scholar 

  31. J. Preisler, E.S. Yeung, Appl. Spectrosc. 49, 1826 (1995)

    Article  ADS  Google Scholar 

  32. J. Koch, S. Schlamp, T. Rosgen, D. Fliegel, D. Gunther, Spectrochim. Acta, Part B 62, 20 (2007)

    Article  ADS  Google Scholar 

  33. J. Koch, M. Walle, S. Schlamp, T. Rosgen, D. Gunther, Spectrochim. Acta, Part B 63, 37 (2008)

    ADS  Google Scholar 

  34. H.C. Van De Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

  35. A.B. Brailovsky, S.V. Gaponov, V.I. Luchin, Appl. Phys. A 61, 81 (1995)

    Article  ADS  Google Scholar 

  36. X. Zhang, S.S. Chu, J.R. Ho, C.P. Grigoropoulos, Appl. Phys. A 64, 545 (1997)

    Article  ADS  Google Scholar 

  37. R. Hergenroder, J. Anal. At. Spectrom. 21, 1016 (2006)

    Article  Google Scholar 

  38. D.B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992)

    Article  ADS  Google Scholar 

  39. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. D 35, 2935 (2002)

    Article  Google Scholar 

  40. R. Kelly, A. Miotello, Nucl. Instrum. Methods Phys. Res. B 122, 374 (1997)

    Article  ADS  Google Scholar 

  41. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966)

    Google Scholar 

  42. L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, New York, 1959)

    MATH  Google Scholar 

  43. J.L. Taylor, Philos. Mag. 46, 317 (1955)

    MATH  Google Scholar 

  44. P.E. Dyer, J. Sidhu, J. Appl. Phys. 64, 4657 (1988)

    Article  ADS  Google Scholar 

  45. S. Amoruso, J. Schou, J.G. Lunney, Appl. Phys. A 92, 907 (2008)

    Article  ADS  Google Scholar 

  46. C.S. Ake, R.S. De Castro, H. Sobral, M. Villagran-Muniz, J. Appl. Phys. 100, 053305 (2006)

    Article  ADS  Google Scholar 

  47. E.H. Piepmeier, H.V. Malmstadt, Anal. Chem. 41, 700 (1969)

    Article  Google Scholar 

  48. Y. Iida, Spectrochim. Acta, Part B 45, 1353 (1990)

    Article  ADS  Google Scholar 

  49. W. Sdorra, K. Niemax, Microchim. Acta 107, 319 (1992)

    Article  Google Scholar 

  50. X.L. Mao, W.T. Chan, M.A. Shannon, R.E. Russo, J. Appl. Phys. 74, 4915 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zenobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, T.A., Koch, J., Günther, D. et al. Characterization of aerosol plumes in nanosecond laser ablation of molecular solids at atmospheric pressure. Appl. Phys. B 100, 521–533 (2010). https://doi.org/10.1007/s00340-010-4112-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4112-9

Keywords

Navigation