Skip to main content
Log in

Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory

  • Invited paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical rectification of femtosecond pulses in nonlinear materials is an efficient method to generate ultra short terahertz (THz) pulses over a wide frequency range extending from 100 GHz to well above 10 THz. Lithium niobate is particularly well suited for such purposes and can be used both in bulk and periodically poled forms. Different optical techniques for the generation of THz pulses are presented and compared theoretically. The whole discussion is performed for the interaction of gaussian beams using the radiating antenna approach that takes into account the diffraction of the THz wave, and therefore may predict the THz emission in a direction that differs from the optical pulse propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Xu, C. Zhang, X. Zhang, Prog. Nat. Sci. 12, 729 (2002)

    MathSciNet  Google Scholar 

  2. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990)

    ADS  Google Scholar 

  3. F.J.B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, Semicond. Sci. Technol. 20, S266 (2005)

    Article  Google Scholar 

  4. T. Yajima, N. Takeuchi, Japan. J. Appl. Phys. 9, 1361 (1970)

    Article  ADS  Google Scholar 

  5. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, H. Ito, IEEE Trans. Microw. Theory Technol. 48, 653 (2000)

    Article  ADS  Google Scholar 

  6. Y. Shen, Prog. Quantum Electron. 4, 207 (1976)

    Article  ADS  Google Scholar 

  7. L. Xu, X.C. Zhang, D.H. Auston, Appl. Phys. Lett. 61, 1784 (1992)

    Article  ADS  Google Scholar 

  8. J. Khurgin, Proc. SPIE 3824, 128 (1999)

    Article  Google Scholar 

  9. K. Sakai, Terahertz Optoelectronic (Springer, Berlin, 2005)

    Google Scholar 

  10. W. Shi, Y. Ding, N. Fernelius, K. Vodopyanov, Opt. Lett. 27, 1454 (2002)

    Article  ADS  Google Scholar 

  11. Y. Sasaki, Y. Avetisyan, H. Yokoyama, H. Ito, Opt. Lett. 30, 2927 (2005)

    Article  ADS  Google Scholar 

  12. J. Hebling, A. Stepanov, G. Almaasi, B. Bartal, J. Kuhl, Appl. Phys. B 78, 593 (2004)

    Article  ADS  Google Scholar 

  13. M. Theuer, G. Torosyan, C. Rau, R. Beigang, K. Maki, C. Otani, K. Kawase, Appl. Phys. Lett. 88, 071122 (2006)

    Article  ADS  Google Scholar 

  14. K.L. Vodopyanov, Opt. Express 14, 2263 (2006)

    Article  ADS  Google Scholar 

  15. J. Shan, T. Heinz, Top. Appl. Phys. 92, 1 (2004)

    Google Scholar 

  16. K. Wynne, J.J. Carey, Opt. Commun. 256, 400 (2005)

    Article  ADS  Google Scholar 

  17. A. Bonvalet, M. Joffre, J.L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995)

    Article  ADS  Google Scholar 

  18. R. Huber, A. Brodschelm, F. Tauser, A. Leitenstorfer, Appl. Phys. Lett. 76, 3191 (2000)

    Article  ADS  Google Scholar 

  19. Y. Lee, T. Norris, J. Opt. Soc. Am. B 19, 2791 (2002)

    ADS  Google Scholar 

  20. J. Ahn, A. Efimov, R. Averitt, A. Taylor, Opt. Express 11, 2486 (2003)

    Article  ADS  Google Scholar 

  21. B. Ferguson, X.-C. Zhang, Nature Mater. 1, 26 (2002)

    Article  ADS  Google Scholar 

  22. D.A. Roberts, IEEE J. Quantum Electron. QE-28, 2057 (1992)

    Article  ADS  Google Scholar 

  23. A. Harada, Y. Nihei, Appl. Phys. Lett. 69, 2629 (1996)

    Article  ADS  Google Scholar 

  24. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, Opt. Lett. 21, 591 (1996)

    Article  ADS  Google Scholar 

  25. G.D. Miller, Periodically poled lithium niobate: Modelling, fabrication, and nonlinear-optical performance, Ph.D. thesis, Stanford University (1998)

  26. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, Appl. Phys. Lett. 62, 435 (1993)

    Article  ADS  Google Scholar 

  27. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995)

    ADS  Google Scholar 

  28. D.A. Bosomword, Appl. Phys. Lett. 9, 330 (1966)

    Article  ADS  Google Scholar 

  29. M. Schall, H. Helm, S. Keiding, Int. J. Infrared Milli. 20, 595 (1999)

    Article  Google Scholar 

  30. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, K. Polgar, J. Appl. Phys. 97, 123505 (2005)

    Article  ADS  Google Scholar 

  31. G.A. Askaryan, Sov. Phys. JETP 15, 943 (1962)

    Google Scholar 

  32. D.A. Bagdasaryan, A.H. Makaryan, P. Pogosyan, JETP Lett. 37, 594 (1983)

    ADS  Google Scholar 

  33. D.N. Auston, Appl. Phys. Lett. 43, 713 (1983)

    Article  ADS  Google Scholar 

  34. J.A. Armstrong, N. Blombergen, J. Ducuing, P.S. Pershan, Phys. Rev. 127, 1918 (1962)

    Article  ADS  Google Scholar 

  35. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, IEEE J. Quantum Electron. QE-28, 2631 (1992)

    Article  ADS  Google Scholar 

  36. Y. Avetisyan, Y. Sasaki, H. Ito, Appl. Phys. B 73, 511 (2001)

    ADS  Google Scholar 

  37. C. Weiss, G. Torosyan, Y. Avetisyan, R. Beigang, Opt. Lett. 26, 563 (2001)

    Article  ADS  Google Scholar 

  38. L.A. Eyres, P.J. Tourreau, T.J. Pinguet, C.B. Ebert, J.S. Harris, M.M. Fejer, L. Becouarn, B. Gerard, E. Lallier, Appl. Phys. Lett. 79, 904 (2001)

    Article  ADS  Google Scholar 

  39. K.L. Vodopyanov, M.M. Fejer, D.M. Simanovskii, V. Kozlov, Y.-S. Lee, in: Technical Digest, Conference on Lasers and Electro Optics. Paper CWM1 (Opt. Soc. Amer., Washington DC, 2005)

  40. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. Khan, P. Gunter, J. Opt. Soc. Am. B 23, 1822 (2006)

    Article  ADS  Google Scholar 

  41. Y. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, A. Galvanauskas, Appl. Phys. Lett. 76, 2505 (2000)

    Article  ADS  Google Scholar 

  42. Y. Ding, Opt. Lett. 29, 2650 (2004)

    Article  ADS  Google Scholar 

  43. J. Faure, J. van Tilborg, R.A. Kaindl, W.P. Leemans, Opt. Quantum Electron. 36, 681 (2004)

    Article  Google Scholar 

  44. G.H. Ma, S.H. Tang, G.K. Kitaeva, I.I. Naumova, J. Opt. Soc. Am. B 23, 81 (2006)

    Article  ADS  Google Scholar 

  45. F. Zernike, P. Berman, Phys. Rev. Lett. 15, 999 (1965)

    Article  ADS  Google Scholar 

  46. J. Morris, Y. Shen, Phys. Rev. A 15, 1143 (1977)

    Article  ADS  Google Scholar 

  47. J.Z. Xu, X.-C. Zhang, Opt. Lett. 27, 1067 (2002)

    Article  ADS  Google Scholar 

  48. P.K. Tien, R. Ulrich, R.J. Martin, Appl. Phys. Lett. 17, 447 (1970)

    Article  ADS  Google Scholar 

  49. Y. Avetisyan, C. Weiss, G. Torosyan, R. Beigang, Generation of narrow-band thz radiation by surface emitted optical rectification in periodically poled lithium niobate, in: Multifrequency Electronic/Photonic Devices and Systems for Dual-Use Application, ed. by A. Pirich, P. Repak, Proc. SPIE 4490, 134 (2001)

  50. Y.H. Avetisyan, K.N. Kocharian, A new method of terahertz difference frequency generation using periodically poled waveguide, in: CLEO 1999 Technical Digest, pp. 380–381

  51. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, R. Beigang, Appl. Phys. B (2006), DOI: 10.1007/s00340-006-2528-z

  52. J.A. Straton, Electromagnetic Theory (Mc-Graw-Hill, New York, 1941)

    Google Scholar 

  53. D.H. Auston, K.P. Cheung, J.A. Valdmanis, D.A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984)

    Article  ADS  Google Scholar 

  54. C. Fattinger, D. Grischkowsky, IEEE J. Quantum Electron. QE-25, 2608 (1989)

    Article  ADS  Google Scholar 

  55. Y. Sasaki, Y. Avetisyan, K. Kawase, H. Ito, Appl. Phys. Lett. 81, 3323 (2002)

    Article  ADS  Google Scholar 

  56. D.N. Auston, K.P. Cheung, P.R. Smith, Appl. Phys. Lett. 45, 284 (1984)

    Article  ADS  Google Scholar 

  57. P.U. Jepsen, R.H. Jacobsen, S.R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996)

    ADS  Google Scholar 

  58. J.A. Valdmanis, G.A. Mourou, C.W. Gabel, IEEE J. Quantum Electron. QE-19, 664 (1983)

    Article  ADS  Google Scholar 

  59. D.H. Auston, M.C. Nuss, IEEE J. Quantum Electron. QE-24, 184 (1988)

    Article  ADS  Google Scholar 

  60. X.-C.Z.Q. Wu, Opt. Quantum Electron. 28, 945 (1996)

    Article  Google Scholar 

  61. Y. Lee, T. Meade, M. DeCamp, T. Norris, A. Galvanauskas, Appl. Phys. Lett. 77, 1244 (2000)

    Article  ADS  Google Scholar 

  62. T. Yajima, N. Takeuchi, Japan. J. Appl. Phys. 9, 1361 (1970)

    Article  ADS  Google Scholar 

  63. Y.S. Lee, T. Meade, M.L. Naudeau, T.B. Norris, A. Galvanauskas, Appl. Phys. Lett. 77, 2488 (2000)

    Article  ADS  Google Scholar 

  64. T. Bumaa, T.B. Norris, Appl. Phys. Lett. 87, 251105 (2005)

    Article  ADS  Google Scholar 

  65. A.S. Weling, B.B. Hu, N.M. Froberg, D.H. Auston, Appl. Phys. Lett. 64, 137 (1994)

    Article  ADS  Google Scholar 

  66. X. Liu, J. Wu, W. Duan, B. Gu, J. Appl. Phys. 97, 114108 (2005)

    Article  ADS  Google Scholar 

  67. A. Stepanov, J. Kuhl, I. Kozma, E. Riedle, G. Almasi, J. Hebling, Opt. Express 13, 5762 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.A. L’huillier.

Additional information

PACS

42.65.Ky; 42.70.Mp; 42.72.Ai

Rights and permissions

Reprints and permissions

About this article

Cite this article

L’huillier, J., Torosyan, G., Theuer, M. et al. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory. Appl. Phys. B 86, 185–196 (2007). https://doi.org/10.1007/s00340-006-2490-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2490-9

Keywords

Navigation