Skip to main content
Log in

Optimum splitting ratio for amplifier noise reduction by an asymmetric nonlinear optical loop mirror

Applied Physics B Aims and scope Submit manuscript

Abstract

We theoretically and experimentally analyze the influence of the splitting ratio and the input power on the noise reduction capability of an asymmetric nonlinear optical loop mirror (NOLM) for different input noise levels. An easy method to calculate the optimum parameters for noise reduction is also presented. The best noise reduction is found at NOLM input powers at which the nonlinear transfer function has a slope close to zero. Additionally, the splitting ratio of the NOLM has to be adapted to its input noise level to suppress amplitude fluctuations effectively. Since the noise reduction by the NOLM is due to the Kerr nonlinearity, which has a timescale below a few femtoseconds, the noise reduction is applicable to short pulses in the picosecond and femtosecond range. This makes the NOLM applicable as an optical regenerator in an optical data transmission system at high bit rates, such as 160 GBit/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. N.J. Doran, D. Wood, Opt. Lett. 13, 56 (1988)

    Google Scholar 

  2. K.J. Blow, N.J. Doran, B.K. Nayar, Opt. Lett. 14, 754 (1989)

    Google Scholar 

  3. K.J. Blow, in Proc. CLEO Focus Meeting (Munich, Germany, 2001)

  4. T. Sakamoto, H.C. Lim, K. Kikuchi, IEEE Photonics Technol. Lett. 14, 1041 (2002)

    Google Scholar 

  5. D. Krylov, K. Bergman, Opt. Lett. 23, 390 (1998)

    Google Scholar 

  6. M. Fiorentino, J.E. Sharping, K. Kumar, D. Levandovsky, M. Vasilyev, Phys. Rev. A 64, 031801(R) (2001)

    Article  Google Scholar 

  7. S. Schmitt, J. Ficker, M. Wolff, F. Koenig, A. Sizmann, G. Leuchs, Phys. Rev. Lett. 81, 2446 (1998)

    Article  Google Scholar 

  8. M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, U. Andersen, J. Opt. B 6, 652 (2004)

    Google Scholar 

  9. M. Meissner, K. Sponsel, K. Cvecek, A. Benz, S. Weisser, B. Schmauss, G. Leuchs, IEEE Photonics Technol. Lett. 16, 2105 (2004)

    Article  Google Scholar 

  10. S. Boscolo, J.H.B. Nijhof, S.K. Turitsyn, Opt. Lett. 25, 1240 (2000)

    Google Scholar 

  11. S. Boscolo, S.K. Turitsyn, K.J. Blow, IEEE Photonics Technol. Lett. 14, 30 (2002)

    Article  Google Scholar 

  12. S. Boscolo, S.K. Turitsyn, K.J. Blow, in Proc. ECOC, Copenhagen, Denmark, vol. 3, P.3.12 (2002)

  13. N.J. Smith, N.J. Doran, J. Opt. Soc. Am. B 12, 1117 (1995)

    Google Scholar 

  14. R. Ludwig, A. Sizmann, U. Feiste, C. Schubert, M. Kroh, C.M. Weinert, H.G. Weber, in Proc. ECOC (Amsterdam, Netherlands, 2001)

  15. Z. Huang, A. Gray, Y. Wan, A. Lee, I. Khrushchev, I. Bennion, in Proc. ECOC, Rimini, Italy, vol. 1, Mo4.6.3 (2003)

  16. F. Seguineau, B. Lavigne, D. Rouvillain, P. Brindel, L. Pierre, O. Leclerc, in Proc. OFC, Los Angeles, USA, WN4 (2004)

  17. E. Yamada, M. Nakazawa, IEEE J. Quantum Electron. 30, 1842 (1994)

    Article  Google Scholar 

  18. Y.J. Chai, I.Y. Khrushchev, R.V. Penty, I.H. White, IEEE Photonics. Technol. Lett. 14, 417 (2002)

    Article  Google Scholar 

  19. C. Nan, B. Carlsson, P. Jeppesen, IEEE J. Lightwave Technol. 20, 1809 (2002)

    Article  Google Scholar 

  20. N. Chi, L.K. Oxenlowe, A. Siahlo, P. Jeppesen, in Proc. ECOC, Copenhagen, Denmark, vol. 3, 6.3.5 (2002)

  21. G.P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995)

    Google Scholar 

  22. G. Wasik, F.W. Helbing, F. König, A. Sizmann, G. Leuchs, in Proc. CLEO/QELS, Baltimore, USA, CMA4 (2001), p. 3

  23. H.G. Weber, R. Ludwig, C. Schmidt, C. Schubert, J. Berger, E. Hilliher, M. Kroh, V. Marembert, C. Boerner, S. Ferber, H.J. Ehrke, in Proc. ECOC, Copenhagen, Denmark, vol. 1, 2.1.1 (2002)

  24. IEC-Norm 61280-2-9

  25. E. Desurvire,Y in Proc. ECOC, Copenhagen, Denmark, vol. 2, E3.1.1 (2002)

  26. J.B. Stark, P. Mitra, A. Sengupta, Opt. Fiber Technol. 7, 275 (2001)

    Article  Google Scholar 

  27. A.G. Striegler, B. Schmauss, IEEE J. Lightwave Technol. 22, 1877 (2004)

    Article  Google Scholar 

  28. M. Meissner, M. Roesch, B. Schmauss, G. Leuchs, IEEE Photonics Technol. Lett. 15, 1297 (2003)

    Article  Google Scholar 

  29. S. Spaelter, M. Burk, U. Stroessner, A. Sizmann, G. Leuchs, Opt. Exp. 2, 77 (1998)

    Google Scholar 

  30. S. Spaelter, M. Burk, U. Stroessner, M. Boehm, A. Sizmann, G. Leuchs, Europhys. Lett. 38, 335 (1997)

    Article  Google Scholar 

  31. D.V.D. Linde, Appl. Phys. B 36, 201 (1986)

    Article  Google Scholar 

  32. G.P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997)

    Google Scholar 

  33. E. Desurvire, Erbium Doped Fiber Amplifiers (Wiley International, 1994)

  34. E. Desurvire, Erbium Doped Fiber Amplifiers, Device and System Developments (Wiley, New York, 2002)

    Google Scholar 

  35. T.M. Monro, V. Finazzi, W. Belardi, K.M. Kiang, J.H. Lee, D.J. Richardson, in Proc. ECOC, Copenhagen, Denmark,vol. 1, S.1.5 (2002)

  36. A. Bjarklev, K.P. Hansen, T.P. Hansen, K. Hougaard, E. Knudsen, S. Barkou Libori, J. Laegsgaard, M. Dybendal Nilesen, J. Riishede, T. Tanggaard Larsen, in Proc. ECOC, Copenhagen, Denmark, vol. 1, S1.1 (2002)

  37. P. Russel, Science 299, 358 (2003)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meissner, M., Rösch, M., Schmauss, B. et al. Optimum splitting ratio for amplifier noise reduction by an asymmetric nonlinear optical loop mirror. Appl. Phys. B 80, 489–495 (2005). https://doi.org/10.1007/s00340-005-1736-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1736-2

PACS

Navigation