Skip to main content
Log in

Towards a scalable quantum computer/simulator based on trapped ions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe the concept and experimental demonstration of the basic building blocks of a scalable quantum computer using trapped-ion qubits. The trap structure is divided into subregions where ion qubits can either be held as memory or subjected to individual rotations and multi-qubit gates in processor zones. Thus, ion qubits can become entangled in one trapping zone, then separated and distributed to separate zones (by switching control-electrode potentials) where subsequent single- and two-ion gates, and/or detection is performed. Recent work using these building blocks includes (1) demonstration of a dense-coding protocol, (2) demonstration of enhanced qubit-detection efficiency using quantum logic, (3) generation of GHZ states and their application to enhanced precision in spectroscopy, and (4) the realization of teleportation with atomic qubits. In the final section an analog quantum computer that could provide a shortcut towards quantum simulations under requirements less demanding than those for a universal quantum computer is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.I. Cirac, P. Zoller: Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  2. M.A. Nielsen, I.L. Chuang: Quantum Computation and Quantum Information, 1st edn. (Cambridge University Press, Cambridge 2000)

  3. D.J. Wineland, C.R. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof: J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)

    Article  Google Scholar 

  4. D. Kielpinski, C. Monroe, D.J. Wineland: Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  5. M.D. Barrett, B.L. DeMarco, T. Schaetz, D. Leibfried, J. Britton, J. Chiaverini, W.M. Itano, B.M. Jelenkovic, J.D. Jost, C. Langer, T. Rosenband, D.J. Wineland: Phys. Rev. A 68, 042302 (2003)

    Article  ADS  Google Scholar 

  6. B.B. Blinov, L. Deslauriers, P. Lee, M.J. Madsen, R. Miller, C.R. Monroe: Phys. Rev. A 65, 040304 (2002)

    Article  ADS  Google Scholar 

  7. J. Bollinger, D.J. Heinzen, W.M. Itano, S.L. Gilbert, D.J. Wineland: IEEE Trans. Instrum. Meas. 40, 126 (1991)

    Article  Google Scholar 

  8. R.P. Feynman, F. Vernon, R.W. Hellwarth: J. Appl. Phys. 28, 49 (1957)

    Article  ADS  Google Scholar 

  9. L. Allen, J.H. Eberly: Optical Resonance and Two-level Atoms (Dover, Mineola, NY 1987)

  10. The laser-beam waists (approximately equal to the beam diameters) at the ions were approximately 30 μm

  11. D. Kielpinski, V. Meyer, M.A. Rowe, C.A. Sackett, W.M. Itano, C.R. Monroe, D.J. Wineland: Science 291, 1013 (2001)

    Article  ADS  Google Scholar 

  12. D. Leibfried, B.L. DeMarco, V. Meyer, D. Lucas, M.D. Barrett, J. Britton, J. Chiaverini, W.M. Itano, B.M. Jelenkovic, C. Langer, T. Rosenband, D.J. Wineland: Nature 422, 414 (2003)

    Article  ADS  Google Scholar 

  13. D.J. Wineland, M.D. Barrett, J. Britton, J. Chiaverini, B.L. DeMarco, W.M. Itano, B.M. Jelenkovic, C. Langer, D. Leibfried, V. Meyer, T. Rosenband, T. Schaetz: Philos. Trans. R. Soc. Lond. A 361, 1349 (2003)

    Article  ADS  Google Scholar 

  14. The state of two qubits can be described in the Bell basis, spanned by four maximally entangled states [2]: the singlet state |↑↓〉-|↓↑〉 and the triplet states |↑↑〉+|↓↓〉, |↑↓〉+|↓↑〉, and |↑↑〉-|↓↓〉, respectively

  15. D. Wineland, H. Dehmelt: Bull. Am. Phys. Soc. 20, 637 (1975); R. Blatt, P. Zoller: Eur. J. Phys. 9, 250 (1988)

    Google Scholar 

  16. http://qist.lanl.gov/

  17. B.E. King, C.S. Wood, C.J. Myatt, Q.A. Turchette, D. Leibfried, W.M. Itano, C.R. Monroe, D.J. Wineland: Phys. Rev. Lett. 81, 1525 (1998)

    Article  ADS  Google Scholar 

  18. T. Schaetz, M.D. Barrett, D. Leibfried, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland: Phys. Rev. Lett. (2004) in press

  19. C.H. Bennett, S.J. Wiesner: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. To preserve a superposition or an entangled state, no measurement that would cause the projection into some other states is allowed. A Bell-state measurement can be accomplished by transforming from the Bell basis [14] into the measurement basis, prior to the individual state measurement of each qubit. Therefore, the Bell measurement provides information about which of the four Bell states the two qubits were previously in, but no information about the states of the individual qubits. We realize this by a conditional (disentangling) phase gate followed by individual read out of the two qubits [18]

  21. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger: Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  22. T. Schaetz et al.: submitted for publication (2004)

  23. D.P. DiVincenzo: in Scalable Quantum Computers, ed. by S.L. Braunstein, H.-K. Lo, P. Kok (Wiley-VCH, 2001)

  24. D. Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer, D.J. Wineland: Science 304, 1476 (2004)

    Article  ADS  Google Scholar 

  25. D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Heinzen: Phys. Rev. A 46, R6797 (1992)

  26. The statistical limit is governed by quantum projection noise, arising due to the statistical nature of projecting a superposition state into one eigenstate by the measurement

  27. D.M. Greenberger, M.A. Horne, A. Shimony, A. Zeilinger: Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland: Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  29. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Rohde, S.T. Gulde, C.F. Roos, P.A. Barton, D. Leibfried, J. Eschner, F. Schmidt-Kaler, R. Blatt: J. Opt. B 3, 34 (2001)

    Article  ADS  Google Scholar 

  31. D. Porras, J.I. Cirac: Phys. Rev. Lett. 92, 207901 (2004)

    Article  ADS  Google Scholar 

  32. E. Jané, G. Vidal, W. Dür, P. Zoller, J.I. Cirac: quant-ph/0207011 (2002)

  33. Q.A. Turchette, C.J. Myatt, B.E. King, C.A. Sackett, D. Kielpinski, W.M. Itano, C.R. Monroe, D.J. Wineland: Phys. Rev. A 62, 053807 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schaetz.

Additional information

PACS

03.67.Lx; 32.80.Qk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaetz, T., Leibfried, D., Chiaverini, J. et al. Towards a scalable quantum computer/simulator based on trapped ions. Appl. Phys. B 79, 979–986 (2004). https://doi.org/10.1007/s00340-004-1652-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-004-1652-x

Keywords

Navigation