Skip to main content
Log in

Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have performed simulations of laser energy deposition in an engineered absorbing defect (i.e. metal nanoparticle) and the surrounding fused silica taking into account various mechanisms for the defect-induced absorption of laser energy by SiO2. Then, to simulate the damage process in its entirety, we have interfaced these calculations of the energy absorption with a 2-D Lagrange–Euler hydrodynamics code, which can simulate crack formation and propagation leading to craters. The validation of numerical simulations requires detailed knowledge of the different parameters involved in the interaction. To concentrate on a simple situation, we have made and tested a thin-film system based on calibrated gold nanoparticles (600-nm diameter) inserted between two silica layers. Some aspects of our simulations are then compared with our experimental results. We find reasonable agreement between the observed and simulated crater sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ‘Laser Induced Damage in Optical Materials: Collected Papers, 1969–1998 ’. In: Proc. Boulder Damage Symp. (SPIE, Bellingham, Washinton, USA 1999)

  2. N. Bloembergen: Appl. Opt. 12, 661 (1973)

    Article  ADS  Google Scholar 

  3. A. Manenkov, A. Prokhorov: Sov. Phys. Usp. 29, 104 (1986)

    Article  ADS  Google Scholar 

  4. P.P. Hel, D.F. Edwards: Appl. Opt. 26, 4677 (1987)

    Article  ADS  Google Scholar 

  5. J.O. Porteus, F.C. Seitel: Appl. Opt. 23, 3796 (1984)

    Article  ADS  Google Scholar 

  6. R.M. O’Connell: Appl. Opt. 31, 4143 (1992)

    Article  ADS  Google Scholar 

  7. H. Bercegol: SPIE Proc. 3902, 339 (2000)

    Article  ADS  Google Scholar 

  8. S. Papernov, A.W. Schmid, R. Krishnan, L. Tsybeskov: SPIE Proc. 4347, 146 (2001)

    Article  ADS  Google Scholar 

  9. A.V. Hamza, W.J. Siekhaus, A.M. Rubenchik, M.D. Feit, L.L. Chase, M. Savina, M.J. Pellin, I.D. Hutcheon, M.C. Nostrand, M. Runkel, B.W. Choi, M.C. Staggs, M.J. Fluss: SPIE Proc. 4679, 96 (2002)

    Article  ADS  Google Scholar 

  10. S. Papernov, A.W. Schmid: J. Appl. Phys. 92, 5720 (2002)

    Article  ADS  Google Scholar 

  11. F. Bonneau, P. Combis, J.L. Rullier, J. Vierne, M.J. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J.Y. Natoli, M. Perra, H. Bercegol, L. Lamaignère, M. Loiseau, J.T. Donohue: Appl. Phys. B 75, 803 (2002)

    Article  ADS  Google Scholar 

  12. P. Grua, J.P. Morreeuw, H. Bercegol, G. Jonusauskas, F. Vallée: Phys. Rev. B 68, 35424 (2003)

    Article  ADS  Google Scholar 

  13. S. Papernov, A.W. Schmid: J. Appl. Phys. 82, 5422 (1997)

    Article  ADS  Google Scholar 

  14. P. Combis, F. Bonneau, G. Daval, L. Lamaignère: SPIE Proc. 3902, 317 (2000)

    Article  ADS  Google Scholar 

  15. G. Mie: Ann. Phys. (4) 25, 377 (1908)

  16. M. Born, E. Wolf: Principles of Optics (Pergamon, Oxford 1980) Chapt. 13

  17. F. Bonneau, P. Combis, J. Vierne, G. Daval: SPIE Proc. 4347, 308 (2001)

    Article  ADS  Google Scholar 

  18. F. Bonneau, P. Combis, J.B. Gaudry, G. Daval: SPIE Proc. 4347, 560 (2001)

    Article  ADS  Google Scholar 

  19. F. Bonneau, B. Cazalis: SPIE Proc. 2714, 650 (1996)

    Article  ADS  Google Scholar 

  20. A.V. Bushman, I.V. Lomonosov, V.E. Fortov: Sov. Tech. Rev. B 5, 1 (1993)

    Google Scholar 

  21. E. Palik: Handbook of Optical Constants of Solids (Academic, London 1985)

  22. W. Ebeling, A. Förster, V. Fortov, V. Griaznov, A. Polishchuk: Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart 1991)

  23. A. Decoster, P. Markowich, B. Perthame: Modeling of Collisions (Gauthier-Villars, Paris 1998)

  24. D. Arnold, E. Cartier: Phys. Rev. B 46, 15102 (1992)

    Article  ADS  Google Scholar 

  25. L.V. Keldysh: Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  26. M.B. Rubin, A.V. Attia: LLNL UCRL ID 104759 (1990)

  27. J.M. Chevalier, I. Bertron, F. Malaise, R. Courchinoux: in Proc. 53rd Meet. Aeroballistic Range Association, 2002

  28. D.R. Faux: LLNL UCRL ID 128520 (1997)

  29. F. Bonneau, P. Combis, J.L. Rullier, J. Vierne, H. Ward, H. Bercegol, P. Bouchut, J. Donohue, L. Gallais, L. Lamaignère, C. Le Diraison, M. Loiseau, J.Y. Natoli, C. Pellé, M. Perra:: SPIE Proc. 4760, 1055 (2002)

    Article  ADS  Google Scholar 

  30. J.Y. Natoli, P. Volto, M. Pommies, G. Albrand, C. Amra: SPIE Proc. 3244, 76 (1998)

    Article  ADS  Google Scholar 

  31. L. Gallais, J.Y. Natoli: Appl. Opt. 42, 960 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bonneau.

Additional information

PACS

61.80.Ba; 42.70.-a; 52.38.Mf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonneau, F., Combis, P., Rullier, J. et al. Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica. Appl. Phys. B 78, 447–452 (2004). https://doi.org/10.1007/s00340-003-1387-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1387-0

Keywords

Navigation